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a  b  s  t  r  a  c  t

An  improved  approximate  maximum  likelihood  algorithm  is developed  for  estimating  measurement
noise  variances  along  with  model  parameters  and  disturbance  intensities  in  nonlinear  stochastic  differ-
ential  equation  (SDE)  models.  This  algorithm  uses  a Laplace  approximation  and  B-spline  basis  functions
for  approximating  the  likelihood  function  of  the  parameters  given  the  measurements.  The  resulting
Laplace  approximation  maximum  likelihood  estimation  (LAMLE)  algorithm  is  tested  using  a  nonlin-
ear  continuous  stirred  tank  reactor  (CSTR)  model.  Estimation  results  for four model  parameters,  two
process  disturbance  intensities  and  two  measurement  noise  variances  are  obtained  using  LAMLE  and
are compared  with results  from  two  other maximum-likelihood-based  methods,  the  continuous-time
stochastic  method  (CTSM)  of  Kristensen  and  Madsen  (2003)  and  the Fully  Laplace  Approximation  Esti-
mation  Method  (FLAEM)  (Karimi  and  McAuley,  2014).  Parameter  estimations  using  100  simulated  data
sets  reveal  that  the  LAMLE  estimation  results  tend to  be more  precise  and  less  biased  than  corresponding
estimates  obtained  using  CTSM  and  FLAEM.

© 2014  Elsevier  Ltd.  All  rights  reserved.

1. Introduction

Fundamental models based on mass and energy balances are imperfect representations of process behavior due to simplifying assump-
tions and approximations that ignore complex interactions (Maria, 2004). Model uncertainties may  also arise from random disturbances
associated with feed streams and the environment of the chemical process (Gagnon and MacGregor, 1991; Srivastava et al., 2013). As a
result, some modelers add stochastic terms to their dynamic fundamental models to account for model mismatch and process disturbances,
resulting in systems of stochastic differential equations (SDEs) (King, 1974; Érdi and Tóth, 1989).

In this article, we consider a Multi-Input Multi-output (MIMO) nonlinear SDE model of the following form:

ẋ(t) = f(x(t), u(t), �) + �(t) (1.a)

x(t0) = x0 (1.b)

y(tmr,j) = g(x(tmr,j), u(tmr,j), �) + �(tmr,j) (1.c)
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Nomenclature

Abbreviations
AEM approximate expectation maximization
AMLE approximate maximum likelihood estimation
CSTR continuous stirred tank reactor
CTSM continuous time stochastic modeling
EKF extended Kalman filter
IQR interquartile range
LA Laplace approximation
LAMLE Laplace approximation likelihood method
MCMC  Markov chain Monte Carlo
MIMO  multi-input multi-output
ML  maximum likelihood
MLE  maximum likelihood estimation
SDE stochastic differential equation
SML  simulated maximum likelihood

Roman letters
a CSTR model parameter relating heat-transfer coefficient to coolant flow rate
b CSTR model exponent relating heat-transfer coefficient to coolant flow rate
cs number of B-spline coefficients for sth state trajectory
CA concentration of reactant A (kmol m−3)
CA0 feed concentration of reactant A (kmol m−3)
cp heat capacity of reactor contents (J kg−1 K−1)
cpc coolant heat capacity (J kg−1 K−1)
C1 constant in Eq. (15)
C2 constant in Eq. (A.7)
C3 constant in Eq. (B.6)
cov{.} covariance
D function of f and its derivatives shown in Eq. (B.16)
det determinant
dim dimension of a vector
E{.} expected value
E/R activation energy divided by the ideal gas constant (K)
f X-dimensional nonlinear function on the right-hand side of the SDE model (Eq. (5))
F reactant volumetric flow rate (m3 min−1)
Fc coolant volumetric flow rate (m3 min−1)
g Y-dimensional vector of nonlinear functions on the right hand side of Eq. (5)
G derivative of J1 defined in Eq. (B.29)
gr nonlinear function on the right hand side of Eq. (1.c) for rth measurement
�Hrxn enthalpy of reaction (J kg−1 K−1)
HX∼ Hessian matrix of the − ln p(Xq, Ym|�) with respect to Xq evaluated at Xq∼
HB Hessian matrix of the − ln p(Xq, Ym|�) with respect to B-spline basis functions
Hxr∼ Hessian matrix defined in Eq. (C.3)
H�r

Hessian matrix defined in Eq. (C.7)
I identity matrix
j1 and j2 positive integers in Eq. (3)
JAMLE,CSTR AEM objective function for CSTR model defined in Eq. (25)
JAMLE AMLE objective function defined in Eq. (11)
J1 objective function defined in Eq. (A.2)
Jd objective function defined in Eq. (B.6)
kref kinetic rate constant at temperature Tref (min−1)
kr rate constant defined in Eq. (22)
M order of B-spline basis functions
n number of measurements
nC number of measurements for concentration of reactant A
Nr number of measurements for rth response
nT number of measurements for temperature
P number of unknown model parameters
p(.) probability density function
q number of discretization points for SDE model (Eq. (1))
Q diagonal power spectral density function
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