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a  b  s  t  r  a  c  t

This  paper  analyzes  the  application  of  global  sensitivity  analysis  (GSA)  to  the  improvement  of  processes
using  various  case  studies.  First,  a brief  description  of  the  methods  applied  is given,  and  several  case
studies  are examined  to  show  how  GSA  can  be  applied  to  the  study  to improve  the processes.  The  case
studies  include  the identification  of  processes;  comparisons  of  the  Sobol,  E-FAST  and  Morris  GSA  methods;
a  comparison  of GSA  with  local  sensitivity  analysis;  an  examination  of  the  effect  of  uncertainty  levels  and
the  type  of  distribution  function  on the input  factors;  and  the application  of  GSA  to the  improvement  of
a  copper  flotation  circuit.  We conclude  that  GSA  can  be a useful  tool in  the  analysis,  comparison,  design
and  characterization  of  separation  circuits.  In  addition,  we conclude  that  using  the  stage’s  recoveries  of
each species  as  input  factors  is a suitable  choice  for  the GSA  of  a flotation  plant.

© 2014  Elsevier  Ltd. All  rights  reserved.

1. Introduction

Mineral processing comprises many unit operations, such as
gravitational, magnetic and flotation stages, which are aimed at
extracting valuable material from ores. Usually, the processes’
operating conditions are defined to control the balance between
a high recovery rate of the desired metal and a high grade value
of the metal in the product outflow (Méndez, Gálvez, & Cisternas,
2009a). These processes usually include multiple stages that are
interconnected (forming circuits) to maximize the recovery rate
and concentrate grade. The design and analysis of these circuits,
including the design and analysis of each stage, continues to be a
challenging task (Ghobadi, Yahyaei, & Banisi, 2011).

A designer initially solves a synthesis problem (for any process)
by trial-and-error. There are many arrangements of a concentration
circuit that correspond to an acceptable trial-and-error solution;
however, many of these arrangements can be incorrect, ineffective
or uneconomical, which is realized when feedback on an exist-
ing process becomes available. Concentration circuits commonly
evolve over time solving a number of existing problems while cre-
ating new ones (Schena & Casali, 1994).
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Several methods for the design of these circuits have been
presented in the literature; these methods attempt to develop a
systematic procedure to replace the trial-and-error method, which
is time-consuming and requires much experimentation. Among
the methods developed are those that use heuristics to develop
a feasible design or that improve an existing design (Connolly
& Prince, 2000). However, these procedures use rules that are
not always satisfied or that contradict each other and therefore
do not guarantee an optimal design. Other methods use opti-
mization or mathematical programming procedures (Cisternas,
Méndez, Gálvez, & Jorquera, 2006; Ghobadi et al., 2011; Méndez,
Gálvez, & Cisternas, 2009b) using a superstructure to create a set
of alternatives from which an optimum design can be selected.
However, the use of these methods requires training in optimiza-
tion techniques because the problems are usually formulated as
MINLP models for which there are no commercial codes available
that ensure optimality. For the aforementioned reasons, none of the
developed methodologies are widely used in industry.

The concentration stage is difficult to model, and ore char-
acteristics vary among mining operations. Currently, there is no
theoretical model that can predict the floatability of different
species of a mineral and thus experimentation is necessary to
develop models that can be used to design these systems. However,
these experimentally based models have a limited range of appli-
cation depending on the experimental conditions and the number
of experiments used. The compositions and mineralogical species
vary among mining operations, which in turn affects the floatability
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behavior and undermines the model validity as well as the oper-
ational parameters that are limited based on design ranges. Thus,
there are at least two sources of uncertainty: the model and the ore
characteristics.

Sensitivity analysis (SA) can be employed to address uncertain-
ties in the model and application scenarios, thereby facilitating the
evaluation of process structures and operational behaviors. Lucay,
Mellado, Cisternas, and Gálvez (2012) applied a local SA to ana-
lyze and design separation circuits. The authors studied the effect
of each stage on the general circuit by identifying the relation
between the recovery rate of each stage and the global recovery
rate of the circuit. Mellado, Gálvez, Cisternas, and Ordoñez (2012)
applied local SA to heap leaching to validate the analytical model
as well. However, local SA only considers the neighborhood of the
input variation, and the effect of each input parameter is measured
by keeping all the other input parameters at their nominal values.
Global sensitivity analysis (GSA) can overcome these limitations
and has other advantages (Saltelli, Tarantola, & Campolongo, 2000).

Fesanghary, Damangir, and Soleimani (2009) studied the use of
GSA and a harmony search algorithm for the design optimization of
shell and tube heat exchangers (STHXs) from the economic view-
point. GSA was used to reduce the size of the optimization problem;
non-influential geometrical parameters that have the least effect on
total cost of STHXs are identified and are ignored in the optimiza-
tion calculation. Later, Schwier, Hartge, Werther, and Gruhn (2010)
used GSA in the flow sheet simulation of solid processes, which
allowed for the examination and quantification of the influences
of given parameters on specific target criteria. GSA was  used to
decrease the effort required for the parameter estimation in a given
process simulation by focusing the effort on the most influential
parameters.

This work attempts to show how a GSA can be used in the analy-
sis, design and retrofit of concentration circuits and the equipment
that compose it. This work is expected to complement current
design techniques, such as trial-and-error methods, heuristics or
optimization. Various methodologies of GSA are analyzed and the
effect of the nature of the uncertainty of the input factors is studied.

2. Global sensitivity analysis

According to Saltelli et al. (2008), the SA can be defined as “the
study of how uncertainty in the output of a model (numerical or
otherwise) can be apportioned to different sources of uncertainty
in the model input”. These techniques have been widely used in var-
ious engineering areas and are of great importance in determining
the most significant variables in a model. The general objectives
of GSA are (Reuter & Liebscher, 2008): (a) The identification of
the significant and insignificant factors and the possible reduction
of the dimensions (number of design variables) of an optimiza-
tion problem. (b) The improvement in the understanding of the
model behavior (highlighting interactions among factors and find-
ing combinations of factors that result in high or low values for the
model output). SA can be classified as: (a) Local sensitivity analysis
(LSA) or differential sensitivity analysis, which is represented by
the first partial derivative of a model under evaluation, producing a
coefficient that describes the rate of change between the model
output and one model factor while all the other factors remain
constant. Its main advantage is its easy implementation and evalu-
ation; however, it can only assess a single factor at a time (Hamby,
1994). (b) GSA (Morris Max, 1991; Reuter & Liebscher, 2008; Saltelli,
Tarantola, Campolongo, & Ratto, 2007; Saltelli et al., 2008; Storlie
& Helton, 2008), which for some, is identical to SA (Reuter &
Liebscher, 2008) and corresponds to the evaluation of an output
model when all the model factor are simultaneously evaluated,
being mainly resolved by numerical methods (Monte Carlo method,

Quiasi Monte Carlo and Latin Hypercube). This methodology has
the advantage of simultaneously assessing all factors; however, it
requires a large amount of data for which the model is evaluated
using, and the mathematical techniques are more complex. GSA
methods can be classified into three groups (Confalonieri, Bellocchi,
Bregaglio, Donatelli, & Acutis, 2010): (1) Regression methods: The
standardized regression coefficients are based on a linear regres-
sion of the output on the input vector. Linear regression is the most
commonly used, but there are other techniques that are also in
this group (Storlie & Helton, 2008). (2) Screening methods: This
refers to the method developed by Morris with significant mod-
ification as given by Campolongo, Cariboni, and Saltelli (2007),
being described in detail in Section 2.2. (3) Variance-based meth-
ods (Reuter & Liebscher, 2008; Saltelli et al., 2007, 2008; SimLab,
2008): This is a GSA method in which the variance of the model out-
put can be decomposed into terms of increasing dimension, called
partial variances, that represent the contribution of the inputs (i.e.,
single inputs, pairs of inputs, etc.) to the overall uncertainty of the
model output. This method enables the simultaneous exploration
of the space of the uncertain inputs, which is usually carried out
via Monte Carlo sampling. Statistical estimators of partial variances
are available to quantify the sensitivities of all the inputs and of
groups of inputs through multi-dimensional integrals. The com-
putational cost, in terms of model simulations, of estimating the
sensitivities of higher-order interactions between inputs can be
very high. To preclude a high computation cost, Homma and Saltelli
(1996) introduced the concept of a total sensitivity index. The total
sensitivity index indicates the overall effect of a given input by
considering all the possible interactions of the respective input with
all the other inputs. Examples of techniques in this group include
the analysis of variance (ANOVA), Fourier amplitude sensitivity test
(FAST), extended Fourier amplitude sensitivity test (E-FAST), Sobol’
method and the high-dimensional model representation (HDMR).

2.1. FAST and Sobol’ method

This method is based on the partitioning of the total variance
of the model output V(Y), considering that the model has the form,
Y = f(x1, x2, . . .,  xn), where Y is a scalar and xi is a model factor, using
the following equation (Confalonieri et al., 2010):

V(Y) =
n∑

i=1

Di +
n∑

i≤j≤n

Dij + · · · +
n∑

i≤...n

Di...n, (1)

where Di represents the first order effect for each factor
xi(Di = V[E(Y|xi)]) and Dij(Dij = V[E(Y|xi, xj)] − Di − Dj) on Dij as the
interactions among n factors. The variance of the conditional expec-
tation (V[E(Y|xi)]) is sometimes called the main effect and is used as
an indicator of the significance of xi. The variance-based methods
(the FAST and Sobol’ methods) allow the calculation of two indices,
i.e., the first-order-effect sensitivity index corresponding to a single
factor (xi)

Si = V [E(Y |xi)]
V(Y)

(2)

and the total sensitivity index corresponding to a single factor
(index i) and the interaction of additional factors that involve the
index i and at least one index j /= i from 1 to n

STi =
∑

i

Si +
∑
j  /=  i

Sij + · · · + S1,...,n (3)

The first order sensitivity index measures only the main effect
contribution of each input factor on the output variance. It does
not take into account the interactions among factors. Two factors
are said to interact if their total effect on the output is not equal
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