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a  b  s  t  r  a  c  t

A  linear  programming  technique  is  proposed  to  balance  the  flows  in  a network,  matching  flow  mea-
surements  where  available.  Where  necessary,  a “leak-out”  flow  is invoked  on  a pipe section  in  order  to
achieve  the  balance.  Usually,  multiple  solutions  are  possible,  and  these  are  sounded  out  by  progressively
increasing  an  integrity  weight  for  each  pipe  section.  A  feature  of  the  method  is  that  it  overlays  “snap-
shots”  of the  network  at a series  of  points  in time,  in order  to progressively  narrow  down  the  part  of  the
network  which  can commonly  account  for all observations.
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1. Introduction

Some 3.5 million people in the Durban metropolitan region
receive drinking water through a system of 265 reservoirs. Most
water is prepared in the Durban Heights and Wiggens plants, and
is delivered to the reservoirs through an interconnected trunk main
system comprising Northern, Southern and Western aqueducts.
Downstream of the reservoirs are yet further vast consumer dis-
tribution networks.

Water losses in the trunk main system are estimated at 4%,
whilst losses in the consumer distribution networks are somewhat
higher than this. One cause of the water loss is aging piping. Another
is water theft through illegal connections. As far as the consumer
piping is concerned, a “pressure management” policy is presently
being implemented and is showing immediate benefits, e.g. 23%
reduction of losses in an example presented by Scruton, Bosboom,
and Fijma (2011). They remark that a reduction of pressure by 10%
typically reduces water loss by 10%. An additional benefit is that
lower operating pressures lengthen the life of piping, albeit with
some inconvenience to consumers.

The maintenance of the distribution network would obviously
be aided by more accurate pin-pointing of leak locations. Trouble-
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some spots could then be prioritised, rather than relying on the
gradual replacement or lining of aging sections. The problem is that
few measurements are available, so deduction of likely locations in
this complex interconnected system is difficult.

A number of workers have addressed this problem of leak
identification in flow networks, within the wider framework of
FDI (fault detection and isolation). On the one extreme are the
transient pressure methods of Casella, Bascetta, Maffezzoni, and
Bodini (2003), Misiunas, Lambert, Simpson, and Olsson (2005) and
Doney (2007). On the other extreme is the TaKaDu® approach of
Scolnicov and Horowitz (2010). This latter method is not model-
based, but is rather based on statistical correlations between flows
and pressures, and the deviations from these correlations caused
by a new leak.

Statistical techniques have also been used by other workers,
but they have normally used a model to generate probabil-
ity distributions to ascribe deviant measurements to either
hydraulic parameter variation (e.g. roughness) or leaks. Poulakis,
Valougeorgis, and Papadimitriou (2003) used probability distribu-
tions of the model parameters to obtain a measure of the probability
that a set of measured flows and pressures could comply with any
member of a range of modelled leak scenarios. Blesa, Puig, Saludes,
and Vento (2010) used a Linear Parameter Varying (LPV) approach
based on an EPANET hydraulic model of the network. A linearised
model at the operating point allowed for an acceptable range of
agreement (“zonotope”) based on confidence in the model param-
eters. Falling outside of that range triggered a leak alert.

0098-1354/$ – see front matter © 2013 Elsevier Ltd. All rights reserved.
http://dx.doi.org/10.1016/j.compchemeng.2013.11.017

dx.doi.org/10.1016/j.compchemeng.2013.11.017
http://www.sciencedirect.com/science/journal/00981354
http://www.elsevier.com/locate/compchemeng
http://crossmark.crossref.org/dialog/?doi=10.1016/j.compchemeng.2013.11.017&domain=pdf
mailto:mulholland@ukzn.ac.za
mailto:abderrazak.latifi@univ-lorraine.fr
dx.doi.org/10.1016/j.compchemeng.2013.11.017


M.  Mulholland et al. / Computers and Chemical Engineering 66 (2014) 252–258 253

Some methods have relied on artificial intelligence techniques
to recognise patterns indicating leaks. Gertler, Romera, Puig, and
Quevedo (2010) used Principal Component Analysis based on pres-
sure and flow deviations from a model, to associate such residuals
with particular leak scenarios. As a test-case, a small network model
was run in SIMULINK. de Silva, Mashford, and Burn (2011) trained
a Support Vector Machine (SVM), similar to an artificial neural net,
to classify leak situations in a water distribution network in Mel-
bourne. An EPANET model of the network was  used to provide a
large enough training set embracing the possible leak situations. Xia
and Guo-jin (2010) used a clustering approach to reduce the regions
of the network that needed to be considered in respect of a leak.
The clustering was based on the strength of inter-point pressure
correlations (from hydrodynamic modelling). A fuzzy recognition
algorithm then identified which cluster is associated with a leak by
matching the pressure deviation pattern.

Several workers have focused on the sensitivity of pressure
and/or flow measurements to new leaks, and have used the asso-
ciated relational matrix to locate possible leaks. Ragot and Maquin
(2006) proposed a model-based method where the model rep-
resented the mass-balance using flows (determined from pump
switching) and reservoir accumulations. The model provided mea-
surement sensitivity to the flows, which was then represented in
a binary matrix. Measurement deviations from the model were
then interpreted from this matrix using fuzzy logic. In similar work,
Quevedo, Cugueró, Pérez, Nejjari, Puig and Mirats (2011) analysed
the behaviour of a part of the Barcelona distribution network, using
only pressure measurements. Residuals were defined by deviations
from predicted pressures using a detailed hydrodynamic model
based on EPANET. A sensitivity analysis of the model provided a
matrix relating residuals to individual pipe flows, whence leaking
pipe sections could be identified.

Wu and Sage (2006), followed by Sethaputra, Limanond, Wu,
Thungkanapak, and Areekul (2009), describe software that has been
developed to locate leaks in a defined water distribution network.
An hydraulic model is initially set up, including leaks at potential
locations. A genetic algorithm then performs an “optimal” fit of the
model to a set of measured pressure and flow data, by randomly
selecting from a range of parameters such as pipe roughness, but
also possible leak values at all of the leak locations.

The present work parallels that of Wu and Sage (2006), in that
a flow model, including potential leaks, is fitted optimally to mea-
sured flow data. In addition though, it explicitly seeks supporting
evidence in the time variations of the system. Moreover, as in the
work of Xia and Guo-jin (2010), candidate leak positions are found
as a cluster.

In the application described below, a method is developed
for more typical local conditions where the measurements avail-
able have poor temporal and spatial resolution. Measurements are
always available for legal final consumers, because they have to
be charged. But these are monthly (or even longer) consumptions.
In this context, pressure measurements which vary quite rapidly
are almost useless. Moreover, there are very few continuous pres-
sure recordings, and pressures are in any case “interfered with” by
in-line pressure-reducers. So the algorithm will be based entirely
on the mass-balance. To allow for application of the same algo-
rithm on the trunk-main system over shorter periods, the method
will also provide for accumulations at nodes in the network (i.e. in
reservoirs).

2. Theory

Consider the simple distribution system in Fig. 1. Of nodes V1, V2,
V3, V4, V5 and V6, only V1, V4 and V5 are cumulative (reservoirs). The
rest are merely pipe junctions or delimiters of pipe sections. In this
system, only three flow (or consumption) measurements (marked

Fig. 1. Distribution system with N = 6 nodes and M = 8 pipes.

m)  are available: f1, f7 and f8. Given that the accumulation rates
dV1/dt,  dV4/dt and dV5/dt are also measureable, the basic problem
is to ascribe water loss to the most likely of pipes j = 2, 3, 4, 5 or 6.
There is obviously not enough information to do this, so, as shall be
seen, the method attempts to enlist the help of time-variations in
the system too (e.g. month-to-month consumptions).

Define a concept of pipe “leak-out” errors bj and “leak-in” errors
aj, j = 1,. . .,M,  as in Fig. 2.

So the node mass-balances are

A [f + a] − B [f + b] = dV

dt
(1)
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and measured values are inserted in Eq. (1) for dVi/dt,  i = 1,. . .,N
(0 for non-accumulative nodes). Obviously one expects aj = 0, but
these terms are retained for an important balancing role which they
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Fig. 2. Concept of “leak-out” and “leak-in” stream errors.
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