
Computers and Chemical Engineering 66 (2014) 276–289

Contents lists available at ScienceDirect

Computers and Chemical Engineering

j our na l ho me pa g e: www.elsev ier .com/ locate /compchemeng

Asynchronous optimisation with the use of a cascade search algorithm

F. Ceceljaa,∗, A. Kokossisb, D. Dua, S. Yanga

a Centre for Process & Information Systems Engineering, University of Surrey, Guildford GU2 7XH, United Kingdom
b School of Chemical Engineering, National Technical University of Athens, Athens GR-15780, Greece

a r t i c l e i n f o

Article history:
Received 3 October 2013
Accepted 14 February 2014
Available online 25 February 2014

Keywords:
Markov processes
Asynchronous optimisation
Parallel and distributed computing

a b s t r a c t

This paper introduces the development of an asynchronous approach coupled with a cascade optimisa-
tion algorithm. The approach incorporates concepts of asynchronous Markov processes and introduces a
search process that is benefiting from distributed computing infrastructures. The algorithm uses concepts
of partitions and pools to store intermediate solutions and corresponding objectives. Population inflec-
tions are performed periodically to ensure that Markov processes, still independent and asynchronous,
make arbitrary use of intermediate solutions. Tested against complex optimisation problems and in
comparison with commonly used Tabu Search, the asynchronous cascade algorithm demonstrates a sig-
nificant potential in distributed operations with favourable comparisons drawn against synchronous and
quasi-asynchronous versions of conventional algorithms.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Along with deterministic optimisation, stochastic search based
optimisation often referred to as stochastic optimisation (Fouskasis
& Draper, 2002), has found many applications in solving complex
engineering problems because it overcomes problems associated
with nonlinearities and discrete variables (Cavin, Fisher, Glover,
& Hungerbuhler, 2004; Jayaraman, Kulkarni, Karale, & Shelokar,
2000). It is based on statistically random probabilistic driven search
which guarantees full exploration of search space and exclusion
of local optima (Kokossis, Linke, & Yang, 2011). The advantages
and disadvantages of stochastic optimisation have been reviewed
by numerous authors (Fouskasis & Draper, 2002; Gosavi, 2003;
Jayaraman et al., 2000). Yet, in order to ensure convergence and
to address search inefficiencies associates with randomness, var-
ious strategies have been developed to get use of past history of
solutions and to find and favourise the most promising search
direction. These have been formalised in a number of optimisa-
tion algorithms: perhaps the best known are Simulated Annealing
(SA) (Kirkpatrick, Gellat, & Vecchi, 1983), Tabu Search (TS) (Glover,
1989), Genetic Algorithm (GA) (Goldberg, Deb, & Clark, 1992) and
Ant Colony Optimisation (ACO) (Dorigo, DiCaro, & Gambardella,
1999). Still, stochastic optimisation generally suffers from slow
convergence.

∗ Corresponding author. Tel.: +44 01483 686 585; fax: +44 01483 812 556.
E-mail addresses: f.cecelja@surrey.ac.uk (F. Cecelja), akokossis@mail.ntua.gr

(A. Kokossis).

Many contributions were made to overcome slow convergence
of stochastic optimisation, which include (i) introducing the level of
intelligence in the form of exploiting knowledge about the appli-
cation (Labrador-Darder, Cecelja, Kokossis, & Linke, 2009; Nandi
et al., 2004) or capturing and managing knowledge from the past
history of solutions to guide the search (Kokossis, Cecelja, Labrador-
Darder, & Linke, 2008), (ii) parallelising or distributing the search
process (Cantu-Paz & Goldberg, 2000; Leite & Topping, 1999; Talbi,
Hafidi, & Geib, 1998), and (iii) improving existing or developing new
algorithms to better accommodate parallel processing by enabling
full asynchronous search and knowledge acquisition (Du, Cecelja, &
Kokossis, 2011; Kokossis et al., 2008, 2011; Labrador-Darder et al.,
2009).

Parallelising the search efforts is perhaps the most commonly
reported approach of improving convergence of stochastic algo-
rithms. It exploits advances in computing infrastructure where
parallel computing resources are readily available in the form of
grid networks or cloud computing across the Internet. Parallel ver-
sions of ACO (Reimann, Doerner, & Hartl, 2004; Yang & Zhuang,
2010), GA (Cantu-Paz & Goldberg, 2000; Lim, Ong, Jin, Sendhoff,
& Lee, 2007), TS (Borfeldt, Gehring, & Mack, 2003; Cordeau &
Maischberger, 2012; Crainic, Toulouse, & Gendreau, 1996; Talbi
et al., 1998) and SA (Leite & Topping, 1999; Peierls & Deng, 1998)
have been reported. The most common approach is sequential
and/or synchronous mode where multiple threads of algorithms
are executed sequentially or in parallel exploring different regions
with varying degree of collaboration between them (Fouskasis &
Draper, 2002; Peierls & Deng, 1998). In order to minimise redun-
dant search, that is to minimise repeated or overlapped moves,

http://dx.doi.org/10.1016/j.compchemeng.2014.02.009
0098-1354/© 2014 Elsevier Ltd. All rights reserved.

dx.doi.org/10.1016/j.compchemeng.2014.02.009
http://www.sciencedirect.com/science/journal/00981354
http://www.elsevier.com/locate/compchemeng
http://crossmark.crossref.org/dialog/?doi=10.1016/j.compchemeng.2014.02.009&domain=pdf
mailto:f.cecelja@surrey.ac.uk
mailto:akokossis@mail.ntua.gr
dx.doi.org/10.1016/j.compchemeng.2014.02.009

F. Cecelja et al. / Computers and Chemical Engineering 66 (2014) 276–289 277

Notation

Anp,t domain of Dh
np,t

Dh
np,t cascade of np pools at time instance t

f objective function of an optimisation problem
f max
j,t

maximum f in Pj,t at time instance t

f min
j,t

minimum f in Pj,t at time instance t
F superset of numerical functions including the objec-

tive function f
Fmax

t maximum objective value of the population avail-
able at time instance t

Fmin
t minimum objective value of the population avail-

able at time instance t
g a numerical function in F, normally refers to inequal-

ity constraints of the optimisation problem
gL,nM

t Markov process at time instance t
G set of disjoint partitions in S
G1 the highest partition associated with the tempera-

ture T1
Gj,t partition j at time instance t
Gnp the lowest partition associated with temperature

Tnp

h a numerical function in F, normally refers to equality
constraints of the optimisation problem

hi,j numerical function over Gi,j
hT

j
thread, a software programme to be executed inde-
pendently

hsm measure of object (C, Pj)
i index of points (solutions) in partition (pool) j
j index of partitions (pools) from top to bottom, j = 1,

2, . . ., np

L length of Markov process
Mj number of available points in Gj,t
nI number of consecutive iterations
nM size of Markov space (number of Markov processes

running in parallel)
nT number of threads to be executed independently
nST, nQ purpose defined integer numbers
P1 the highest pool associated with the lowest quality

solutions
Pj,t pool j at time instance t
Pnp the lowest pool associated with the highest quality

solutions
Qj,t population of partition (pool) Gj,t (Pj,t) at time

instance t
QnM Markov space of nM Markov processes
R random number distributed uniformly in [0,1] ∈ �
S feasible region of an optimisation problem
si,j,t point i in partition j at time instance t
T1 temperature associated with the highest pool P1
Tj parameter associated with pool Pj called tempera-

ture
Tnp temperature associated with the lowest pool Pnp

WnT space of nT threads
� real number defining the cooling schedule that is

distribution of temperatures between T1 and Tnp

ε a small number in [0,1] ∈ �

synchronisation introduced after a full set of parallel threads have
been completed, at which point solution analysis takes place and
new search starts afresh. In consequence, the speed of execution is
dictated by the slowest thread executed on the slowest computer.
The computational overhead associated with communication,

computer management activities and idling of faster threads
becomes dominant and benefits from parallel execution limited.

The development of a fully distributed stochastic optimisation
algorithms capable of parallel processing without the need for syn-
chronisation still remains a challenge. Cascading algorithm (CA) has
been proposed as an approach to break down optimisation threads
and Markov chain and hence inherently allowing for parallel exe-
cution (Kokossis et al., 2011). This algorithm stores intermediate
solutions into pools (and partitions). Similarly to SA, the number
of pools is equivalent to temperatures. Pools are ordered accord-
ing to the quality of solutions (objective values) forming a cascade
with the properties, the norm of population and deviation, which
can be controlled. The CA search operates iteratively by choosing
randomly a candidate point which is accepted/rejected by the prob-
ability controlled by the temperature. The cascade requirements
reflect the quality of solutions which are verified upon arrival of
new points, the process known as inflection. This property of CA
enables independent generation of solutions and serves as the base
for full asynchronous operation.

Building upon the CA approach, this paper proposes a dis-
tributed asynchronous operation of CA which is achieved by
implementing asynchronous Markov processes to independently
generate new points, and dynamic inflection to minimise redun-
dant moves. More precisely, the process of dynamic inflection of
population assures that new Markov processes, although executed
independently, benefit from the most recent population of solu-
tions without the need for synchronisation with other processes
running in parallel. The whole process is formalised in the form
of an Asynchronous Cascade Algorithm. The proposed algorithm
is implemented on the Globus upperware with Grid Superscalar
used to dispatch computational tasks for parallel computing.
To differentiate and report benefits from distributed computing
and asynchronous operations, a set of computationally expensive
problems has been selected. The comparisons are drawn against
optimisation algorithms which include conventional and parallel
implementations of SA and TS.

The paper addresses a general formulation for the optimisation
problem in the form of:

min f (x, y)

s.t. h(x, y) = 0

g(x, y) ≤ 0

x ∈ X ≡ �n, y ∈ Y ≡ {0, 1}n

(1)

where (x, y) accounts for the domain and (h, g) for the problem
constraints.

2. Concepts and definitions

2.1. Basic concepts of cascading

The principle of cascading allows for grouping solutions by their
quality (Kokossis et al., 2011). The feasible region S of the optimi-
sation problem (1) is

S = {(x, y)|h(x, y) = 0 ∧ g(x, y) ≤ 0, x ∈ X, y ∈ Y} (2)

with the range C of f

C = {f (x, y)|∀(x, y) ∈ S} (3)

Let G be a set of disjoined partitions in S

G ≡ UjGj ⊆ S (4)

where partition Gj is ordered set of finite elements in S

Gj = {s1,j, s2,j, . . ., sMj,j
}, si,j ∈ S, i = 1, 2, . . ., Mj, j = 1.2, . . ., np

(5)

Download English Version:

https://daneshyari.com/en/article/172417

Download Persian Version:

https://daneshyari.com/article/172417

Daneshyari.com

https://daneshyari.com/en/article/172417
https://daneshyari.com/article/172417
https://daneshyari.com

