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a  b  s  t  r  a  c  t

Efficient  nonlinear  programming  (NLP)  algorithms  and  modeling  platforms  have led to  powerful  process
optimization  strategies.  Nevertheless,  these  algorithms  are  challenged  by  recent  evolution  and  deploy-
ment  of multi-scale  models  (such  as  molecular  dynamics  and  complex  fluid  flow)  that  apply  over  broad
time  and length  scales.  Integrated  optimization  of  these  models  requires  accurate  and  efficient  reduced
models  (RMs).  This  study  develops  a rigorous  multi-scale  optimization  framework  that  substitutes  RMs
for complex  original  detailed  models  (ODMs)  and  guarantees  convergence  to the  original  optimization
problem.  Based  on  trust  region  concepts  this  framework  leads  to  three  related  NLP  algorithms  for  RM-
based  optimization.  The  first  follows  the  classical  gradient-based  trust-region  method,  the  second  avoids
gradient  calculations  from  the  ODM,  and  the  third  avoids  frequent  recourse  to  ODM evaluations,  using
the  concept  of �-exact  RMs.  We  illustrate  these  algorithms  with  small  examples  and  discuss  RM-based
optimization  case  studies  that  demonstrate  their  performance  and  effectiveness.

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Process systems engineering (PSE) faces increasing demands
and opportunities for better process modeling and optimization
strategies. These demands also present a number of challenges, par-
ticularly as chemical and energy processes incorporate advanced
technologies that need to be modeled, integrated and optimized. To
address these needs, state-of-the-art nonlinear optimization algo-
rithms can now solve models with millions of decision variables
and constraints. Correspondingly, the computational cost of solv-
ing discrete optimization problems has been reduced by several
orders of magnitude (Biegler & Grossmann, 2004). Moreover, these
algorithmic advances have been realized through software model-
ing frameworks that link optimization models to efficient nonlinear
(NLP) and mixed-integer nonlinear programming (MINLP) solvers.
On the other hand, it is important to note that these advances are
enabled because these frameworks permit (indeed require) opti-
mization models to be formulated carefully as well-posed problems
with exact first and second derivatives.

Despite these advances, multi-scale process optimization still
needs effective problem formulation and modeling environments.
Current process simulation models usually consist of lumped
parameter descriptions with a number of ideal assumptions (e.g.,
perfect mixing, plug flow, equilibrium behavior and shortcut mod-
els). These models also do not account for complex transport effects,
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nor do they account for phenomena that take place at broader
length scales. Consequently, they cannot include detailed inter-
actions with material design, complex fluid flow and transport
effects with multiphase interactions. These effects require inte-
gration between molecular, nanoscale and distributed, continuum
levels. As a result, there is a growing need for more detailed, dis-
tributed parameter, multi-scale process models.

At the process optimization level, multi-scale integration is
required to model complex transport and fluid flow phenomena.
For instance, optimization models for advanced power generation
processes (see Lang et al., 2009; Lang, Zitney, & Biegler, 2011)
comprise a heterogeneous modeling environment with lumped
parameter (algebraic) models, such as heat exchangers, compres-
sors and expanders, dynamic models (e.g. for gas separation units)
and multi-phase (partial differential-algebraic) CFD models, e.g.,
for the gasification and combustor-turbine units. Because of the
substantial complexity of the associated model solvers, the com-
putational costs for process optimization are prohibitive. While
lumped parameter flowsheet models take only a few CPU seconds
to solve, a CFD combustion or gasification model alone may  require
many CPU hours or even days.

Moreover, one needs to consider the extension of these model-
ing tools to more complex multi-scale systems. This multi-scale
integration requires the development and implementation of
efficient and accurate model reduction strategies within the opti-
mization framework. To capture this multi-scale, multi-fidelity
model behavior one can consider a cascaded network that can
potentially link models from the atomistic to enterprise-wide
scales, along with optimization formulations that provide the
“glue” to exploit synergies among these systems through RMs. Such
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Fig. 1. Multi-scale optimization linked through RMs.

a holistic strategy is described in Chung, Jhon, and Biegler (2011)
and depicted in Fig. 1.

This study is an extended and substantially enhanced ver-
sion of Biegler and Lang (2012). In this extension we derive,
develop and analyze an optimization framework that addresses
the above multi-scale modeling challenges. Our overall strategy
replaces the original detailed models (ODMs), comprising complex
differential-algebraic equations (DAEs) and partial differential-
algebraic equations (PDAEs), by reduced models (RMs) consisting
of algebraic equations, and it applies large-scale equation-based
optimization strategies to the RMs. Nevertheless, because the RM-
based optimization strategy is allowed to evaluate and compare
information from the ODMs the framework will capture rele-
vant multi-scale phenomena such as complex fluid flow, particle
mechanics, and dynamic operation within the process optimiza-
tion. Moreover, we consider a general strategy for the construction
of RMs  that applies to a broad variety of physics-based or data-
driven model reductions. This is enabled through advances over
the past decade in trust region concepts and derivative-free opti-
mization (DFO).

To develop this strategy, we consider the following basic ques-
tions:

• What properties are needed for the RM-based optimization
framework to converge to the optimum of the original system
models?

• What properties govern the (re)construction of RMs  in order to
balance model accuracy with computational cost during the opti-
mization?

• Can RM-based optimization be performed efficiently without fre-
quent recourse to the original models?

The next section briefly reviews developments in model reduction
with a particular focus toward our RM-based optimization frame-
work. The challenges of RM-based optimization are then illustrated
with a toy problem. We  then present a natural progression of three
related trust region algorithms based on reduced models. The third
and fourth sections describe Algorithms I and II, respectively. The
first algorithm requires gradients directly from the ODM while
Algorithm II does not. Two literature case studies are used to briefly
describe the performance of these methods. More importantly,

both methods work directly with the RM,  but they also guarantee
convergence to the optimum of the ODM. Moreover, Algorithms
I and II provide the supporting concepts for our third algorithm,
which is developed in the fifth section. Here we consider the spe-
cial case of �-exact models, which avoid frequent recourse to the
original models and lead to greater efficiency of Algorithm III, the
new optimization strategy. In addition, two small examples are
presented that describe this approach, along with a comprehen-
sive polymer process optimization case study that demonstrates
the efficiency of this method. Finally, conclusions and future work
are discussed in the sixth section.

2. Development of reduced models

Model reduction is a widespread practice that extends over
many engineering disciplines, and over several decades. Early work
on nonlinear model reduction for PSE includes the use of reduced
models for physical properties embedded within detailed flow-
sheeting models (see Barrett & Walsh, 1979; Boston & Britt, 1978;
Leesley & Heyen, 1977). These early strategies provide a vision for
reduced models that extends beyond physical property models to
a wide range of process engineering tasks. More recently, Caballero
and Grossmann (2008) developed and applied a trust region
RM-based strategy for distillation models in flowsheet optimiza-
tion. Moreover, a derivative-free optimization framework with
enhanced reduced models for flowsheet optimization of energy
systems has been developed in Cozad and Sahinidis (2011).

Because model reduction strategies are widely applied over a
broad range of engineering disciplines, our survey of such strategies
is necessarily limited and we will cover two  general approaches:
model order reduction and data-driven model reduction.

2.1. Model order reduction

The first approach is based on an order reduction of the model
that retains most of the structure of original equations but leads
to a much simpler and smaller model. The PSE literature abounds
with examples that include shortcut models based on physical
phenomena, and simplifying assumptions associated with model
development. Similarly, in the PDE modeling community, reduced
order modeling (ROM) strategies have been developed that include
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