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a  b  s  t  r  a  c  t

We  present  a wavelet-based  grid  refinement  approach  for direct  multiple  shooting  applied  to dynamic
optimization  problems.  The  algorithm,  named  adaptive  multiple  shooting,  automatically  generates  a
problem-dependent  parameterization  of  the  control  profiles:  Starting  from  an initially  coarse  param-
eterization,  the  control  grid  is  refined  iteratively  using  a  wavelet  analysis  of  the  previously  obtained
optimal  solution.  Additional  grid  points  are only  inserted  where  required  and  redundant  grid  points
are  eliminated.  Hence,  the  algorithm  minimizes  the  number  of grid  points  required  to obtain  accurate
optimal  control  trajectories.

First,  we  demonstrate  the  superiority  of  adaptive  grid refinement  over  an equidistant  discretization
for  the Williams–Otto  semi-batch  reactor  employing  multiple  and  single  shooting.  Here,  the accuracy  is
checked  using  an optimal  solution  obtained  by an  indirect  optimization  approach.  Second,  we  success-
fully  demonstrate  the  efficiency  of adaptive  grid  refinement  compared  to an equidistant  discretization
employing  multiple  shooting  to  a dynamically  unstable  HIPS  (high  impact  polystyrene)  polymerization
reactor.

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

In the last years, dynamic optimization problems have received
steadily increasing scientific and industrial attention. Typical
examples of such optimization problems include optimal control
of batch and semi-batch reactors as well as optimal transitions
in continuous processes (such as start-up, shutdown, and load or
grade changes). The dynamic optimization problems describing
these tasks are based on nonlinear process models. However, the
derivation of a high-quality control trajectory is still a challenging
task, especially for large-scale process models, e.g., those typically
occurring in industrial applications.

Typically, dynamic optimization problems are solved by
approximating the continuous problem by a finite-dimensional
optimization problem. Naively, the control profiles are parameter-
ized uniformly relying on a pragmatically chosen grid. Obviously,
the approximation quality depends on the resolution determined
by the chosen parameterization. A coarse resolution of the con-
trol variables results in low computational effort but might lead to
a poor solution quality. However, even a fine resolution, though
resulting in a significantly higher computational effort, might
often not improve the solution quality satisfactorily. This behav-
ior typically stems from over-parameterization which might lead
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to oscillation in the computed control profiles. Furthermore, the
computed solution may  not properly resolve the qualitative struc-
ture of the optimal control profile, which is determined by a series
of so-called (continuous) arcs delimited by discontinuous jumps
(Bryson & Ho, 1975). In such cases, the parameterization is unable
to properly localize the switching points which separate the arcs of
the optimal control profile (Schlegel & Marquardt, 2006b).

The solution quality can be significantly improved by an adap-
tive grid refinement of the control parameterization. Such adaptive
(re-)parameterization of the control profiles during the optimiza-
tion aim at an appropriate resolution of the characteristics of
the controls, including a precise localization of the switching
points, using a minimal number of parameters to avoid over-
parameterization and ill-conditioning. Though such adaptation
does often not improve the objective function significantly, it pro-
vides an accurate resolution of the structure of the control profile,
which reflects the process phenomena correctly and hence favors
interpretation of the optimal solution and consequently process
understanding.

This paper presents a novel dynamic optimization algorithm
which combines the adaptive refinement strategy suggested by
Schlegel, Stockmann, Binder, and Marquardt (2005) with direct
multiple shooting (originally introduced by Bock & Plitt, 1984),
which is called adaptive multiple shooting. Thus, we separate the
control grid from the shooting grid to locally enable a suffi-
ciently fine control parameterization. At the same time, we rely on
direct multiple shooting to explicitly address dynamic optimization
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embedding unstable initial value problems, which often cannot be
solved successfully by (adaptive) single shooting.

The paper is structured as follows. In Section 2, we present
a general formulation of dynamic optimization problems and
introduce the numerical solution methods this work builds on.
Section 3 first introduces some fundamentals of wavelet-based
multi-scale analysis, which forms the basis for the subsequently
presented refinement of the control parameterization. Section 4
demonstrates the potential of adaptive grid refinement for
the Williams–Otto semi-batch reactor. In particular, we com-
pare common equidistant parameterization with the suggested
adaptively refined parameterization for single and multiple shoot-
ing, respectively. Section 5 compares adaptive and equidistant
multiple shooting on dynamic optimization of an unstable poly-
merization reactor. Finally, Section 6 gives a summary and an
outlook.

2. Preliminaries

In this section, we introduce the dynamic optimization prob-
lem and numerical solution strategies that are considered in this
paper. We  also give an overview on adaptive control grid refine-
ment strategies available in the literature.

2.1. Dynamic optimization problem

We  consider the continuous dynamic optimization (or optimal
control) problem (CDYNOPT)

min
u(t)

� = �(y(tf ), x(tf )) (1a)

s.t.Mẏ = f (y(t), x(t), u(t)), t ∈ (t0, tf ], (1b)

0 = g(y(t), x(t), u(t)), t ∈ [t0, tf ], (1c)

y(t0) = y0, (1d)

ymin ≤ y(t) ≤ ymax, t ∈ [t0, tf ], (1e)

xmin ≤ x(t) ≤ xmax, t ∈ [t0, tf ], (1f)

umin ≤ u(t) ≤ umax, t ∈ [t0, tf ], (1g)

0 ≥ e(y(tf ), x(tf )). (1h)

The semi-explicit differential algebraic (DAE) model is represented
by the differential equations f : R

ny × R
nx × R

nu → R
ny (1b) with

the regular matrix M and the algebraic equations g : R
ny × R

nx ×
R
nu → R

nx (1c). We  pragmatically consider matrix M to be con-
stant and the DAE system to have a differential index of 1 or less.
Note that high-index DAE systems can be reduced to index-one
DAE systems by one of the existing symbolical algorithms (e.g.
Bachmann, Brüll, Mrziglod, & Pallaske, 1990; Mattsson & Söderlind,
1993; Pantelides, 1988; Unger, Kröner, & Marquardt, 1995). Here,
y(t) ∈ R

ny denotes the vector of differential and x(t) ∈ R
nx algebraic

states with y0 referring to the vector of consistent initial conditions.
The time-dependent control variables u(t) ∈ R

nu are the decision
variables of the continuous optimization problem. The final time tf
can either be fixed or free. Optimal control problems with a free
final time can be easily transformed into an equivalent optimal
control problem with fixed final time. In this case, the DAE sys-
tem is scaled with a time-invariant parameter (a decision variable),
which represents the final time tf. This generalizes the formula-
tion of CDNYOPT and allows treating the sensitivity of the final
time parameter similarly to time-invariant controls. Without loss

of generality, the objective function � : R
ny × R

nx → R  is of Mayer-
type, since an integral cost can be reformulated as a terminal cost
by including additional differential variables and equations to the
DAE system (Hazewinkel, 2001, cf. Bolza problem). Furthermore,
state and control constraints, Eqs. (1e), (1f) and (1g), respectively,
are defined on the entire optimization horizon I : = [t0, tf] whereas
the terminal constraints e : R

ny × R
nx → R

ne , i.e. Eq. (1h), are only
formulated at final time tf. Note that combined state and control
constraints can be converted easily to the considered formulation
by including additional variables and equations to the DAE system
(e.g., Hannemann, 2012).

For brevity and without loss of generality, we neither consider
additional time-invariant system parameters nor the initial con-
ditions y0 as additional decision variables of the optimization
problem.

2.2. Numerical solution strategies

The solution strategies for dynamic optimization problems of
type CDYNOPT can be classified into indirect and direct methods.
Binder, Blank, Bock, et al. (2001) and Srinivasan, Palanki, and Bonvin
(2003) have reviewed the specific advantages and disadvantages
of the two  approaches in detail. In particular, indirect methods
require knowledge on the structure of the optimal control pro-
files in order to derive the boundary value problem representing
the first-order necessary conditions of optimality (Srinivasan et al.,
2003). In case of nonlinear path constrained problems involving
states and controls, as they are frequently encountered in chemical
engineering applications (Biegler, 2010), this solution structure is
not known a priori; thus, the application of the indirect approach is
rather cumbersome or even impossible (Binder, Blank, Bock, et al.,
2001). In this contribution, we therefore focus on direct methods,
which solve CDYNOPT by adaptive control-vector parameteriza-
tion.

In case of direct methods, the infinite-dimensional dynamic
optimization problem is approximated by a finite-dimensional
(algebraic) optimization problem, which is solved by means of a
suitable nonlinear programming (NLP) algorithm. Three different
types of direct approaches have been established: single shoot-
ing, also referred to as control-vector parameterization (Sargent &
Sullivan, 1978), multiple shooting (Bock & Plitt, 1984), and simulta-
neous state and control-vector parameterization, often called full
discretization approach (Biegler, 1984, 2010; Kraft, 1985). These
approaches differ in the way the variables of CDYNOPT are dis-
cretized.

In this work, we employ direct multiple shooting to solve the
problem CDYNOPT because it can cope with DAE models that show
unstable dynamical behavior.

2.3. Transcription of CDYNOPT by direct multiple shooting

In direct multiple shooting (Bock & Plitt, 1984), the time
horizon I : = [t0, tf] of CDYNOPT is first divided into N equidis-
tant shooting intervals with Ij : = [tj, tj+1], j  = 0, . . .,  N − 1 and
t0 < t1 < t2 < · · · < tN = tf. Next, the control variables u(t) for each
shooting interval are explicitly parameterized. This can, for exam-
ple, be done using B-splines (de Boor, 1978) of order r such that the
parameterized controls ũj

i
on shooting interval j are represented

by

ũj
i
(cj
i
, t) =

∑
l∈�jui

cj
i,l
ϕr,j
l

(t), i = 1, . . .,  nu, (2)
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