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a  b  s  t  r  a  c  t

Process  data  are the  most  important  information  in  all aspects  of  plant  monitoring  and  control  appli-
cations.  These  data,  stemming  from  instruments,  carry  the  necessary  information  that  assists  plant
operations.  One  of  the common  problems  of  process  instrument  readings  is  their  deviation  from  true
values  due  to  instrument  bias  or systematic  error.  Detection  of  change  points  in  process  data  is  the first
step  for  a more  insightful  analysis  of hidden  factors  affecting  the process.  In  this  paper,  both  Bayesian
and  Expectation  and  Maximization  (EM)  methods  are  considered  for  change  point  detection  problem
of  multivariate  data  with  both  single  and  multiple  changes.  The  performance  of  EM  is  compared  with
the  Bayesian  approach.  Simulation  results  show  superiority  of  EM  in  the  case  of improper  selection  of
priors  while  the  Bayesian  approach  has  less  computation  demand.  The  proposed  algorithms  are  evalu-
ated through  several  examples,  two  from  simulated  random  data  and  one  from  a  CSTR problem.  It is  also
verified  through  an  experimental  study of a hybrid  tank  system.

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Process data acquired from instruments are the basis for plant
operation monitoring and control. Accuracy of these measurements
is critical for normal and safe process operations. Consequently,
timely detecting and repairing of faulty instruments are important
for any process operation. Instrument bias, if occurs, remains until
a corrective action such as recalibration is taken on the instrument.
Detection of bias is especially important for reliable instrument
applications. Instrument problems along with other factors such
as a major process upset a change in equipment performance etc.
may  all introduce mean shift so that a bias is introduced in steady
state operating data.

There are various techniques in literature to detect and estimate
bias error in the instruments. An excellent review of single or mul-
tiple gross error detection methods along with their application can
be found in Narasimhan and Jordache (2000). In all of these meth-
ods, process constraints such as material balance, energy balance,
etc. are considered.

On the other hand, data-based approach to detection of the
time instant at which bias is introduced has received great
attention especially in applications such as hydrology, finance, eco-
nomics and meteorology (Basseville & Nikiforov, 1993). In chemical
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engineering applications, there are a lot of sensors or instruments
which may  be subject to bias. Detection of time instants where
these biases are introduced is important in instrument fault iden-
tification. Detection of instants where system operating mode
changes can be another application of change point detection.
These problems are often formulated as change point detection. At
these change points, the mean of data shifts. As detection of these
change points is performed, new mean and hence bias magnitude
can also be determined.

Various methods have been developed in literature to tackle the
problem of change point detection. A good review of these meth-
ods can be found in Basseville and Nikiforov (1993), Lu, Mausel,
Brondizio, and Moran (2004) and Reeves, Chen, wang, Lund, and Lu
(2007). Among these approaches, probabilistic frameworks, such
as Bayesian inference, have been applied in various areas. These
approaches are powerful in the sense that one can incorporate pri-
ori knowledge in estimation of unknown parameters. In Tamhane,
Iordache, and Mah  (1988a, 1988b), a Bayesian approach is used
to detect gross errors based on process models. This method is
applied sequentially over various time periods of data by updating
the priors and posteriors at the end of each period. Computation
of this method for medium to large problems is intensive despite
the modification made by the authors of Tamhane, Iordache, and
Mah  (1988b). In Devanathan, Vardeman, and Rollins (2005), a
Bayesian decision rule is developed to detect the change point
in univariate data which needs selection of prior distributions for
unknown parameters and then derivation of posterior probability

0098-1354/$ – see front matter ©  2013 Elsevier Ltd. All rights reserved.
http://dx.doi.org/10.1016/j.compchemeng.2013.09.012

dx.doi.org/10.1016/j.compchemeng.2013.09.012
http://www.sciencedirect.com/science/journal/00981354
http://www.elsevier.com/locate/compchemeng
http://crossmark.crossref.org/dialog/?doi=10.1016/j.compchemeng.2013.09.012&domain=pdf
mailto:biao.huang@ualberta.ca
dx.doi.org/10.1016/j.compchemeng.2013.09.012


340 M. Keshavarz, B. Huang / Computers and Chemical Engineering 60 (2014) 339– 353

of shift point given the data. The multivariate version of Bayesian
single change point detection can be found in Perreault, Parent,
Bernier, Bobee, and Slivitzky (2000), Djafari and Feron (2007),
Zambadouglas and Hawkins (2006) and Son and Kim (2005).

There are also various approaches developed to solve the prob-
lem of multiple change points detection based on methods such
as hypothesis testing (Venter & Steel, 1996), maximum likelihood
(Hawkins, 2001) and a clustering-based algorithm called product
partition model (PPM) (Barry & Hartigan, 1993; Crowley, 1997).
Among these methods, Bayesian approach has been most widely
adopted.

In any Bayesian framework, having selected a prior for unknown
variables and a certain distribution for likelihood, the problem
becomes solving the posterior distribution by multiplying the prior
and the likelihood. There are two approaches proposed in liter-
ature to solve the change point detection problem based on the
Bayesian approach. One approach relies on finding the mode of
posterior probability called Maximum a Posteriori (MAP) approach
which is optimization-based. The other is to calculate means of
various posterior probabilities, which leads to integration calcula-
tion. In general, these integrations are difficult to solve analytically.
Markov Chain Monte Carlo (MCMC) is often used which draws
samples from posterior distributions. The sampling from poste-
rior distribution is performed using various techniques such as
Metropolis-Hasting or Gibbs sampler (Cheon & Kim, 2010; Djafari &
Feron, 2007; Loschi et al., 2008). In Cheon and Kim (2010), Stochas-
tic Approximation Monte Carlo (SAMC) is applied to multiple
change point detection problem and SAMC performance is com-
pared with reversible jump Markov Chain Monte Carlo approach
(RJMCMC).

On the other hand, Expectation Maximization (EM) can be
regarded as an iterative way to find the maximum likelihood. It
mainly consists of two steps: expectation step and maximization
step. The algorithm iterates between these two steps until conver-
gence. EM uses distribution of missing or hidden variables when it is
not easy to directly maximize the likelihood of the observed data.
Some researchers have already used EM to detect change points
(Bansal, Du, & Hamedani, 2008; Yildirim, Singh, & Doucet, in press).
In Yildirim et al. (in press), a Sequential Monte Carlo (SMC) online
EM algorithm is proposed to estimate the change point. In Bansal
et al. (2008) an EM method is presented to estimate the distribu-
tion of change point. Unlike those EM approaches, the EM algorithm
presented in this paper does not require heavy and complex com-
putation and it is relatively easy to implement.

In this paper, a closed form solution to the Bayesian formula-
tion of single and multiple change point detection problem is first
considered for multivariate data and MAP  is used for the estima-
tion of the parameters. Moreover, considering the sensitivity of the
Bayesian approach to prior selection, EM is adopted to solve both
single or multiple change points detection problem. By compari-
son, it is shown that EM is more powerful when priors are highly
uncertain while the Bayesian approach has its advantage of less
computation demand.

The main contributions of this paper are (1) extension of existing
Bayesian method for change point detection by deriving a closed
form analytical solution and (2) the derivation of EM algorithms
for both single and multiple shift detection in multivariate data to
overcome the limitations of Bayesian approach in the presence of
improper priors.

The remainder of the paper is organized as follows. Section 2
gives an overview of multivariate Bayesian change point detection
in the presence of single or multiple change points. Section 3 derives
EM algorithm for solving the same problem. In Section 4, sensitiv-
ity of prior selection and proper initialization of EM are discussed.
Finally, simulation results along with an experimental evaluation
are provided to demonstrate the proposed algorithms.

2. Bayesian change point detection

2.1. Problem formulation for single change point

In this section, a multivariate Bayesian formulation of change
point detection is provided where Maximum a Posteriori (MAP) is
applied to infer the change point detection and mean. Throughout
this paper, time instant for single change point is referred to as m
and multiple time instants for multiple change points are repre-
sented by the vector t = [t1, . . .,  tN]. Moreover, the covariance of
data is assumed to be the same before and after the change points.

Consider that n observations from p variables form a p × n matrix
as

D =

⎛
⎜⎜⎜⎜⎝

y11 y12 . . . y1m y1(m+1) . . . y1n

y21 y22 . . . y2m y2(m+1) . . . y2n

...
... . . .

...
... .  . .

...

yp1 yp2 . . . ypm yp(m+1) . . . ypn

⎞
⎟⎟⎟⎟⎠

= (Y1, Y2, . . .,  Ym, . . .,  Yn)

Y1, . . .,  Ym, . . .,  Yn are measurements of p variables from time instant
1 to n.

In next sections, we discuss the model for both single and mul-
tiple change points further.

2.2. Single change point detection

To model single change point, it is assumed that at the sampling
instant m,  a change occurs resulting in a shift in the mean vector.
As a result, the whole data are split into two segments operating at
two different means, �1 and �2, respectively with the same covari-
ance matrix �. This general problem formulation framework is
adopted throughout this work. Using Bayesian analysis, the objec-
tive is to find P(m|D) which is the posterior probability of change
point given the data. According to Bayes rule, this probability is
equal to P(m, D)/P(D). In the following, this posterior probability is
derived in detail. It is assumed that observations are independent
of each other and follow a normal distribution as

Yi∼Np(�1, �), i = 1, 2, . . .,  m

Y i∼Np(�2, �),  i = m + 1, m + 2, . . .,  n
(1)

where �1 /= �2. The normal distribution function can be expressed
as

Np(�, �) = (2�)−p/2|�−1|1/2exp{−1
2

(y − �)T �−1(y − �)} (2)

The shift time, m,  can occur anywhere from 1 to n − 1. The likelihood
function of data, D, is therefore of the form

P(D|�1, �2, m, �)  =
m∏

i=1

P(Y i|�1, �)
n∏

i=m+1

P(Y i|�2, �) (3)

where �1, �2 and m are to be determined. The priors for �1, �2
and m are taken as

P(�1|�0
1, �01) = Np(�0

1, �01)

P(�2|�0
2, �02) = Np(�0

1, �02)

P(m) = Uniform distribution

(4)
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