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a  b  s  t  r  a  c  t

Designing  chemical  processes  is  a multi-criteria  optimization  problem  with  conflicting  objectives.  It can
efficiently  be  solved  using  Pareto  sets.  These  sets  contain  all  solutions  for which  an  improvement  in any
objective  can  only  be  achieved  by accepting  a decline  in  at least  one  other  objective.  This  work  integrates
a  novel  algorithm  to determine  Pareto  sets  in  a state-of-the-art  steady-state  flow  sheet  simulator.  An
approximation  of predefined  accuracy  of  the  Pareto  set,  which  can  be convex  or  non-convex,  is  calculated.
The decision  maker  can  then  navigate  interactively  on the  Pareto  set  and  explore  the  different  optimal
solutions.  His  decision  is, hence,  embedded  in  the  knowledge  of  the  entire  Pareto  set.  The  application  of
the  method  is illustrated  by an  example  in which  a distillation  process  for the separation  of  an  azeotropic
mixture  (acetone  + chloroform)  is designed.  Two  process  variants  are  compared:  a  pressure-swing  and
an entrainer  distillation.

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Optimization in chemical process design is usually not focus-
ing on just one economic objective. Rather, two levels of objective
criteria are often considered: design criteria and final decision crite-
ria. The first group contains, for example, product purities, column
duties and reboil ratios. The second group consists of hard economic
objectives like investment and operating costs, often more softer
environmental issues as sustainability key figures and objectives
regarding health and safety. Thus, almost every design decision in
process engineering is a compromise between multiple conflicting
objectives.

In practical process design, the engineer often tries to find an
optimal solution in the multi-dimensional objective space by an
empirical iterative change of the process parameters in the design
space. Usually, this procedure is continued until either a solu-
tion is found which fulfills certain requirements, or some deadline
is reached where a solution has to be delivered. This procedure
may  lead to good results, however, no guarantee on optimality
can be given. Furthermore, the empirical optimization only covers
restricted areas in both the design and objective space, so that only
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limited information on the trade-offs between the different objec-
tives is available and the decision cannot be based on an overview
of the full solution space. This limitation may lead to overlooking
interesting solutions.

It is by far not necessary to calculate all feasible solutions. In
principle, only best compromises need to be studied. These are
solutions where an improvement in any objective can only be
achieved by accepting a worsening in at least one other objec-
tive. The respective solutions are called Pareto-optimal (Geoffrion,
1968) and the set comprising all these solutions is the Pareto set,
often also called the Pareto frontier because the Pareto set lies on
the border between feasible and infeasible solutions.

A common strategy to find single Pareto-optimal solutions is
to weight the objectives and subsequently optimize the weighted
sum. A drawback of this approach is that the weights have to be
chosen beforehand. As the choice of the weights is ambiguous,
many solutions will not be accepted without exploring alternative
choices. Hence, this approach is, in practice, also empirical and iter-
ative. Furthermore, it is difficult to extend this approach to “soft”
objectives, describing safety, environmental, sustainable, or social
issues. These are difficult to weight and compare directly to tech-
nical or economic objectives. Moreover, not every Pareto-optimal
solution can be found by the weighted sum approach: namely if
the Pareto set is not convex (Chankong & Haimes, 1983; Haimes,
1977).
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The chemical engineering literature describes many algorithms
to determine Pareto-optimal solutions more systematically and
efficiently than the weighting approach. They can be classified in
deterministic and stochastic algorithms. Deterministic algorithms
on the one hand, like for example derivative-based methods, are
time-efficient and yield accurate results for the optima, how-
ever, they usually only find the local optimum related to the
starting point. Examples of deterministic algorithms in process
design are goal programming techniques (Chakraborty & Linninger,
2002), including the ε-constraint method (Hugo, Ciumei, Buxton,
& Pistikopoulos, 2004), or weighting approaches with methodical
variation of the weights (Lim, Floquet, Joulia, & Kim, 1999). On
the other hand, stochastic algorithms try to find the global opti-
mum  by sampling large areas of the objective space, which also
leads to time-consuming and less accurate procedures. For exam-
ples of stochastic algorithms in process design see Gutirrez-Antonio
and Briones-Ramirez (2009), Leyland (2002), or Micovic, Beierling,
Lutze, Sadowski, and Górak (2013). Evolutionary approaches in par-
ticular are intensively used for stochastic algorithms as they can be
applied straightforward to any process simulation, are robust and
somewhat insensitive to local optima. For general reviews and clas-
sifications of algorithms to find Pareto-optimal solutions the reader
is referred to Andersson (2000), Bhaskar, Gupta, and Ray (2000), or
Rangaiah (2008).

There have also been efforts to create multi-purpose numerical
tools which apply multi-criteria optimization techniques to arbi-
trary models in a black box. An example is the commercial tool
modeFRONTIER1 that has been successfully coupled to chemical
process simulators (Altendorfner, 2008). To ensure robustness the
software uses an evolutionary algorithm. Using this type of algo-
rithm the user has to accept, however, a computationally expensive
calculation, and gets only an approximation of the Pareto set. Addi-
tionally, the accuracy of this approximation is not known.

Hakanen, Hakala, and Manninen (2006) presented an inter-
active tool that couples a process simulator and a deterministic
multi-criteria optimization algorithm. To avoid an expensive
approximation of the complete Pareto set they use an interactive
algorithm: individual Pareto optimal points are subsequently cal-
culated until the user terminates the algorithm. Thereby, the user
specifies the search direction by updating constraints on the objec-
tives. The major drawback of this interactive method is that the
user only explores parts of the Pareto set. Which parts of the Pareto
set he explores is somewhat intuitive and dependent on the user’s
experience.

In this work we present a tool, which couples a commercial pro-
cess simulator with multi-criteria techniques and overcomes the
earlier mentioned drawbacks related to calculation speed, accuracy
and Pareto set exploration. The work is inspired by the concepts for
determining and visualizing the Pareto set reviewed by Küfer et al.
(2009, chap. 5). The basic idea is to first, efficiently determine an
approximation of the complete Pareto set of a given chemical pro-
cess design problem. This allows the decision maker to focus his
attention only on relevant solutions, so that the decision process
is facilitated. We calculate the approximation of the Pareto set by
using a combination of evolutionary and efficient derivative-based
algorithms. During a short initial evolutionary phase, a variety of
starting points close to the expected Pareto surface is generated.
From these starting points, a sequential quadratic-programming
algorithm is applied to find the Pareto points. We  calculate only a
minimum number of Pareto points to approximate the full Pareto
set to an accuracy which is set by the user a priori. Unneces-
sary computationally expensive simulations are thus avoided. The
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Pareto points are calculated using a method which combines a
sandwiching and a hyperboxing algorithm. Therefore, also non-
convex Pareto sets can be efficiently approximated.

The decision maker can then interactively explore the Pareto set
by navigating with a graphical user interface (GUI). Graphical slid-
ers are used for this purpose, each corresponding to one objective.
By moving one slider, the other sliders are updated in real time,
i.e., information on the trade-offs between the best compromises
is directly visualized. Further, the GUI allows a simultaneous visu-
alization of different Pareto sets which enables comparing different
variants of the process based on different flow sheets. The areas that
are explored can successively be restricted to those which are iden-
tified as the most promising. Thus, we  postpone the restriction to a
limited area of the decision space until the decision maker has got
insight into the complete set of optimal solutions. This interactive
multi-criteria optimization (IMCO) maintains full flexibility until
the final choice of the design point. This choice is, hence, embed-
ded in the knowledge of alternative designs. All choices are left to
the decision maker, who is efficiently supported by the tool in all
steps of the design.

The tool can in principle deal with an arbitrary number of objec-
tives in calculation as well as in visualization. As it is integrated into
a state-of-the-art process simulator, its applications range from
optimization of single apparatuses up to the design of new plants.
Rather than treating the simulator as a black box model, the algo-
rithms are directly coupled with the flow sheet solver which leads
to high speed and robustness. This could in principle be done with
any state-of-the art process simulator, provided that the source
code is available. For reasons explained below in more detail, it
cannot be expected to achieve a similar performance if the process
simulator is only addressed as a black box.

In the following, we first describe the MCO  methods used in
the present work together with their implementation, and then
illustrate their application in a case study in which two processes
for separating chloroform from acetone are compared: an entrainer
and a pressure-swing distillation.

2. Method for MCO  in chemical process design by
navigation on Pareto sets

2.1. Overview

The MCO  chemical process design problem which is addressed
in the present work is of general nature. In principle, any problem,
for which a process simulation can be set up, can be addressed. The
MCO  methods described in the present work were implemented in
CHEMASIM, a steady-state flow sheet simulator which was devel-
oped and is maintained by BASF SE (Hegner & Schoenmakers, 1985).
The methods are generic in the sense that in principle any other
flow sheet simulator could have been used. The main reason to
choose CHEMASIM was that it is an equation-oriented simula-
tor thus allowing for flexible and unified handling of all model
parameters/variables and also providing fast convergence by suit-
able initial guesses. Furthermore, the source code was available
for the present study and CHEMASIM developers were able to join
the team. Other advantages of CHEMASIM are its efficiency and
robustness2 which make it a good choice for the endeavor.

Fig. 1 shows a scheme of process optimization based on pro-
cess simulation and serves for defining the nomenclature used in
the following. The process simulation has input variables, some of

2 To solve the non-linear model equations, a set of process variables as a start
point has to be given to the solver. Empirically we found that the CHEMASIM solver
is  more robust to perturbations in this start point and converges faster than other
process simulators. Both properties are crucial during the optimization process.
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