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This short  note  presents  an  alternate  approximation  of concave  cost  functions  used  to reflect  economies
of scale  in process  design  and  supply  chain  optimization  problems.  To  approximate  the  original  concave
function,  we  propose  a logarithmic  function  that  is  exact  and has  bounded  gradients  at  zero  values  in
contrast  to  other  approximation  schemes.  We  illustrate  the  application  and  advantages  of  the  proposed
approximation.
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1. Introduction

For preliminary calculations in chemical process design and sup-
ply chain strategic planning problems, the equipment or facility
cost (f(x)) increases non-linearly with the size or capacity (x), as a
concave function (Biegler, Grossmann, & Westerberg, 1997; Ciric &
Floudas, 1991; Szitkai et al., 2003). As a result, power law expres-
sions of the form f(x) = cxr with exponents less than one are usually
adopted for capturing the effects of economies of scale. In such opti-
mization problems, one of the major decisions is whether or not to
buy/construct a certain equipment/facility, as well as determining
its size or capacity, x (Biegler & Grossmann, 2004). A major draw-
back of the typical concave cost function f(x) is that its derivative
at x = 0 (a feasible value for x) is unbounded, which causes failures
in the Karush–Kuhn–Tucker conditions of the associated nonlinear
program. Common methods for dealing with such difficulties are:
(a) approximate the concave function by a piecewise linear func-
tion (Geoffrion, 1977), or (b) add a very small value ε to the variable
x, thus slightly displacing the curve toward the negative values of x.
Approximation (a) is computationally costly and rather imprecise
unless a fine discretization of the domain is used. Although in prin-
ciple approximation (b) is reasonable, it has a number of drawbacks,
especially if the exponents are small. To overcome such limitations,
an approximation of logarithmic form is proposed in this short note.

∗ Corresponding author. Tel.: +54 342 455 9175; fax: +54 342 455 0944.
E-mail address: dcafaro@fiq.unl.edu.ar (D.C. Cafaro).

2. Concave cost function and classical approximation

Given is the concave cost function for economies of scale with
the form: f(x) = cxr, where variable x ≥ 0 is the size of the equipment,
f(x) is the cost of the equipment of size x, c > 0 is a constant param-
eter, and 0 < r < 1 is a real exponent. This function has the property
that its derivative with respect to x becomes unbounded when
x = 0. An approximation that has been used to avoid computational
failures of Non-Linear Programming (NLP) and Mixed-Integer Non-
Linear Programming (MINLP) solvers is to add a small value ε to
the x in the function f(x) (Ahmetović  & Grossmann, 2011; Yee
& Grossmann, 1990), so that: f(x) ≈ h(x) = c(x + ε)r. Although this
approximation yields bounded derivatives at x = 0 and a relatively
good estimation of f(x) when small values of ε are adopted, it has
several drawbacks:

1. The smaller the parameter ε, the more precise the estimation,
but the larger its derivative at x = 0, since: h′(x) = c(x + ε)r−1, and
h′(0) = c/ε1−r. If such derivatives become very large, NLP solvers
can lead to failures since the Karush–Kuhn–Tucker conditions
(Bazaraa, Sherali, & Shetty, 1994; Biegler, 2010) cannot be satis-
fied due to ill conditioning.

2. The function h(x) at x = 0 is not exactly equal to zero but h(x) = cεr.
If ε is not small enough, the decision “not to install”, i.e. x = 0, may
incur a non-negligible cost, particularly if r is small.

To illustrate some limitations with the approximation h(x) with
smaller values of r, consider the simple example presented in Fig. 1.
There are i = 1. . .8 potential sites for locating one plant (denoted by
“X”), and j = 1. . .9 markets (represented by “O”). The plant produces
a single liquid product that is supplied by dedicated pipelines to
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Fig. 1. An illustrative example.

the selected markets. The plant capacity is given, and the fixed and
variable charges for the plant installation (˛i, ˇi) are independent
on its location.

The aim of the problem is to determine the optimal location for
the plant (denoted by the binary yi) and the amount of product
hourly supplied to every market (qi,j), so as to maximize the annual
benefits: b(yi, qi,j) =

∑
i,j(pri,j − oci,j)qi,j −

∑
i(˛iyi + ˇi

∑
jqi,j) − z(qi,j)

(sales income − operation costs − plant installation costs − pipeline
costs). Since: (a) the product price and operation costs are indepen-
dent of the plant location and markets supplied (pri,j = pr;  oci,j = oc
∀i,j), (b) only one plant will be selected (

∑
iyi = 1), (c) the plant

capacity Cap, is given (
∑

i,jqi,j = Cap), and (d) fixed and variable costs
for the plant installation are independent of the location (˛i = ˛;
ˇi =  ̌ ∀i), it yields b(yi, qi,j) = (pr − oc)  Cap −  ̨ −  ̌ Cap − z(qi,j), and
the only variable terms in the objective function are pipeline costs
z(qi,j).

The pipeline flow (equal to the variable qi,j) is proportional to
the pipeline section, i.e. qi,j = K1d2

i,j
, where d (m) is the pipeline

diameter and K1 has a value of 4239 m/h  (�/4 × 3600 s/h × 1.5 m/s).
For simplicity, pipeline diameters are treated as continuous vari-
ables. Pipeline installation costs follow an economy of scale
function of the form: z(Li,j, di,j) = K2Li,jd

0.60
i,j

, where Li,j (km)
is the distance between i and j (a given parameter) and
K2 = 1,132,500$ km−1 m−0.60. Thus, the MINLP model is as follows:

Min  z =
∑

i ∈ I,j ∈ J

K2Li,jd
0.60
i,j

S.t.
∑
j ∈ J

qi,j = Cap yi ∀i ∈ I

∑
i  ∈ I

yi = 1 qi,j = K1d2
i,j ∀i ∈ I, j ∈ J qi,j ≤ Demj ∀i ∈ I, j ∈ J

qi,j, di,j≥0 yi ∈ {0, 1}

(1)

By substituting for di,j in the objective function with the pipeline
flow equation in the constraints, i.e. di,j = (qi,j/K1)0.50, we  obtain:

Min  z =
∑

i ∈ I,j ∈ J

f (qi,j) =
∑

i ∈ I,j ∈ J

(K2/K0.30
1 )Li,jq

0.30
i,j

S.t.
∑
j ∈ J

qi,j = Cap yi ∀i ∈ I

∑
i  ∈ I

yi = 1 qi,j ≤ Demj ∀i ∈ I, j ∈ J

0 ≤ qi,j, yi ∈ {0, 1}

(2)
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Fig. 2. Hypothetic solution for the example.

Note that the exponents of qi,j in the non-linear terms of the objec-
tive function are only 0.30.

Assume that the optimal solution is the one depicted in Fig. 2,
where yi1 = 1, qi1,j = 175 m3/h for j = j1, j2, j3; di1,j = 0.2032 m (8
inches) for j = j1, j2, j3; while all the other variables take a zero
value. Using the ε-approximation of f(qi,j) with a reasonable value
for ε = 0.01, the cost of the selected pipelines will be: h(qi1,j1) =
h(qi1,j3) = 92,440 × 70.71 × (175 + 0.01)0.30 = 30.77936 MM$;
h(qi1,j2) = 92,440 × 50 × (175 + 0.01)0.30 = 21.76451 MM$;  which is
quite close to the actual values: f(qi1,j1) = f(qi1,j3) = 92,440 × 70.71 ×
1750.30 = 30.77884 MM$;  f(qi1,j2) = 92,440 × 50 × 1750.30 = 21.76413
MM$.

However, for all the non-selected pipelines featuring qi,j = 0
(totaling 69 non-used arcs i − j) the approximate installation cost
is h(qi,j) = h(0) = 92,440 Li,j (0 + 0.01)0.30 = 23,220 Li,j. Summing the
lengths of the non-selected pipelines (9032 km)  yields a total
of 209.72194 MM$  instead of zero! In fact, the total pipeline
cost in the optimal solution is

∑
i,jf(qi,j) = 83.32181 MM$,  while

the approximation with ε = 0.01 results in the incorrect value
of

∑
i,jh(qi,j) = 2 × 30.77936 + 21.76451 + 209.71906 = 293.04517

(252% error!). If we try a very small value for ε, say ε = 10−9, this
results in

∑
i,jh(qi,j) = 84.98768 (2% error). However, the derivatives

of every term h(qi,j) at qi,j = 0 increase to h′(0) = 1.844 × 1011Li,j
(over 9.220 × 1012), i.e. an unacceptably large value for NLP solvers.
The new approximation proposed in the next section is intended
to overcome such limitations, especially for concave cost functions
with r < 0.5.

3. Logarithmic approximation of the concave cost function

We propose the following approximation function g(x) for
f(x): f(x) = cxr ≈ g(x) = k ln(bx + 1), where x is the size of the equip-
ment, f(x) is the actual cost of the equipment of size x, g(x) is
the estimated cost, and k, b > 0 are real numbers selected to fit
f(x) as closely as possible. The proposed function has two main
advantages:

1. The cost of x = 0 is exactly zero: g(0) = k ln(b0 + 1) = k ln(1) = 0.
2. The derivatives of g(x) for all x ≥ 0 are positive (bounded) val-

ues, given by g′(x) = bk/(bx + 1). In particular at the origin (x = 0),
g′(x) = bk.
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