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a  b  s  t  r  a  c  t

The  multivariate  interaction  of the raw  materials’  physical  properties  can  be  critical  to  the  quality  of  the
final  drug  product.  Although  an  elegant  solution  to this  problem  is  the  establishment  of multivariate
specifications  this  becomes  difficult  (if not  impossible)  to implement  when  the interactions  take  place
across  materials  that  are  sourced  by  different  vendors.  As  an  alternate  solution,  this  work  presents  a
feed-forward  corollary  approach  to model  predictive  control  (MPC)  to improve  the  product  quality  from
a lot-driven-operation;  where  there  are  no available  manipulated  variables  (MV)  in  the process.  In these
special  cases  the  only  degree  of freedom  available  to  be  used  as a MV  for control  is the  lot-to-lot  variability
in  the  raw  materials.  This work  presents  an extension  to  our  earlier  work  (Ind.  Eng.  Chem.  Res. 2013,  52
(17),  pp.  5934–5942)  to  consider  a horizon  of n lots  to be  manufactured.  By considering  this  horizon
of  future  lots  (rather than  just  the next  one)  our  method  allows  the discretionary  use  of  all  materials
to  ensure  that  the  quality  of all the  future  n lots  is within  specification.  This  paper  presents  a  detailed
discussion  of the  objective  function  used  and  also  reports  the  results  of  implementing  this  method  to the
manufacture  of  a pharmaceutical  drug  product  in  a commercial  manufacturing  setting.

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

During the past decade the regulation of the pharmaceutical
industry has transformed the strategies taken to ensure the quality
of pharmaceutical products. Current guidance documents encour-
age practitioners to implement active (and pro-active) strategies to
quality control rather than passive ones that rely solely on testing
the final product (Food & Drug Administration, 2009; U.S. Dept. of
Health & Human Services, 2003).

These trends, along with an increasing competitive business
environment, are driving the pharmaceutical industry to imple-
ment quality assurance and process improvement techniques
developed by the process systems engineering (PSE) commu-
nity in the last three decades (Oksanen & Garcia-Munoz, 2010;
Stephanopoulos & Reklaitis, 2011).

Among these techniques, the implementation of model predic-
tive control (MPC) is undoubtedly one of the most effective ways to
compensate the effect of disturbances onto the productivity of the
process and the quality of the final product (Qin & Badgwell, 2003).
An MPC  algorithm performs an optimization calculation to provide
the best sequence of future moves for the manipulated variables in
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order to keep the process at the desired state. This optimization
calculation is based on a model that predicts the effect of a can-
didate sequence of moves in the manipulated variables; onto the
metrics of interest (i.e. economic criteria, quality based or safety
oriented).

Pharmaceutical applications of MPC  are mostly found in areas
where predictive models are available for the unit operations
involved. A vast majority of the reported MPC  applications have
been in the crystallization field (Hermanto, Chiu, Woo, & Braatz,
2007; Liotta & Sabesan, 2004; Nagy, 2009; Pataki et al., 2012;
Rohani, Horne, & Murthy, 2005); and only a few reported applica-
tions involving unit operations related to the manufacture of drug
product like freeze drying (Pisano, Fissore, & Barresi, 2011).

The manufacturing of pharmaceutical drug product is still
an area of opportunity for the application of MPC. Academics
have already shown the potential of advanced control strate-
gies in this sector (e.g. for roller compaction (Hsu, Reklaitis, &
Venkatasubramanian, 2010)) and surely the field will continue
evolving with industrial applications following soon (Troup &
Georgakis, 2013).

In this work, we  propose a feed-forward corollary approach
to MPC  for a lot-driven-operation; where there are no available
manipulated variables in the process (due to regulatory constraints
for example). These are special cases where the only variability
available to be turned into a degree of freedom in a feed-forward
controller is the lot-to-lot variability in the raw materials.
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Any lot-driven-operation starts with the allocation of raw mate-
rials for the next n lots of goods to be manufactured. Now, the
manufacture of the product will require certain specific amounts
of each raw material per lot produced. The inventory manager will
decide on where to source the needed materials for each of the n
lots to be produced (from the available lots of each ingredient in
the current inventory). For a low volume product, n will typically
be one or two; for a high volume product, n can be as high as the
inventory and production process allows.

The method proposed in our work aims to provide guidance to
this selection in order to minimize the variability in the quality of
the end product. The main objective is to select the lots of materials
to be blended according to their physical properties and cancel out
undesired interactions across materials.

The idea of selecting materials based on the multivariate cor-
relations in their physical and chemical properties was  initially
proposed by Muteki, MacGregor, and Ueda (2006, 2007); Muteki
and MacGregor (2008) and has already been taken to practice for
pharmaceutical applications to select the materials for the next best
lot of product (Garcia-Munoz & Mercado, 2013).

Seeking to maximize the quality of the next best lot for the case
of high volume product will result in the accelerated depletion of
excellent quality raw-materials, potentially leaving only materials
that are less desirable in inventory. The main problem is posed by
the multivariate combination of physical properties across mate-
rials resulting in a poor quality end product, and does not owe to
the individual materials being undesirable or out of specification.
Although an elegant solution to this problem is the establishment
of multivariate specifications (Duchesne & MacGregor, 2004); this
becomes difficult (if not impossible) to implement when the inter-
actions take place across materials from different vendors.

The methodology proposed in this paper extends the next best
lot approach we proposed earlier (Garcia-Munoz & Mercado, 2013)
to consider a horizon of n lots to be manufactured, hence the com-
parison with MPC. By considering this horizon of lots (rather than
just the next one), our method allows the discretionary use of all
materials to ensure that the quality of all the n lots is within speci-
fication.

This paper is organized as follows: In Section 2, we  elaborate on
the process description and the development of the mixture model
used at the core of the optimization exercise. The objective function
and the constraints are discussed in Section 3. The results from
implementing this technique in a commercial setting are shared in
Section 4, followed by our concluding remarks in Section 5.

2. Model development

The case study presented here involves the manufacture of an
encapsulated drug product. After weighing and dispensing of the
necessary ingredients, the material undergoes a granulation step
followed by encapsulation. Due to limitations in equipment avail-
ability, the product can be held for some time between granulation
and encapsulation; this time lapse is referred to as the holding
time. All the process parameters that dictate the operation of this
manufacturing train are fixed due to regulatory constraints. These
constraints prevent us from using any process variable as part of a
control strategy to compensate for disturbances. The only informa-
tion available from a processing stand point is the environmental
conditions of the cubicle where the operation took place (temper-
ature and relative humidity). Needless to say, the formulation (i.e.
composition) of the lot is also fixed.

From a materials perspective, the product requires four inactive
ingredients plus the active pharmaceutical excipient (API – that
accounts for 43.5% weight of the blend). Each material is character-
ized by a different number of properties, which were taken from

Fig. 1. Matrix representation of the data considered.

the certificate of analysis (CoA) of each lot. Finally, the final product
is characterized by six quantities summarizing the results from the
dissolution testing of the multiple capsules sampled from the lot
(Table 1).

Data were gathered from 106 lots of drug product spanning 4
years of manufacturing experience. All this information is orga-
nized in a matrix form (Fig. 1). This system of matrices contains
information (per ingredient) on which lots of raw material were
used and in what quantity (Blending Ratios in matrix R); for each
lot of final drug product. And for each lot of raw material used there
was a record of its physical and chemical properties (X) as reported
in the CoA. As proposed by Muteki et al. (2007) the blending ratios
and the physical properties of the raw materials (matrices R and
X) were combined using a weighted average into a single matrix
(RXI). The environmental conditions are summarized in a matrix Z
and the final quality of the product in matrix Y. It is also known at
this point that the variability in the Z matrix is driven by seasonal
effects (i.e. the Z matrix is predictable).

The strategy to take advantage of the lot-to-lot variability of
the raw materials can only succeed if the variation in the physical
properties of the raw materials is indeed influencing the final qual-
ity of the product. This was  determined using a projection to latent
structures (PLS) model to perform the regressions. A PLS model
was chosen based on the interpretability of its parameters and the
stability of these models upon inversion (Burnham, MacGregor, &
Viveros, 1999;Tomba, Barolo, & Garcia, 2012).

In a PLS model the variables of the regressor and the response are
both summarized by a smaller number of latent variables that are
quantified in the scores of the model (T). The relationships across
variables are represented by the loadings coefficients (W*, P and
Q). Scores and loadings are mathematically related to the original
data as described in equation system 1 where Ex and Ey are the
residuals.

[Z RXI] = TPT + Ex

Y = TQT + Ey

T = [Z RXI]W∗

(1)

In order to assess the correlations present in the data, three PLS
models were built correlating the quality attributes of the product
(Y) with the variability in (i) the environmental conditions (Z),  (ii)
the weighted average of the physical properties of the raw materials
(RXI) and (iii) both.

For this particular case, the best prediction of the final quality
of the product was  obtained when both blocks of regressors (Z and
RXI) were used (Table 2). This result led us to construct a strategy
where the environmental conditions were used as a constraint in
the optimization that guides the selection of the materials for a
given campaign of n lots of final product.
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