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a  b  s  t  r  a  c  t

This paper  is  concerned  with  the  parametric  algorithms  for solving  large-scale  mixed-integer  linear  and
nonlinear  fractional  programming  problems,  as well  as  their  application  in  process  systems  engineer-
ing.  By  developing  an  equivalent  parametric  formulation  of  the  general  mixed-integer  fractional  program
(MIFP), we  propose  four  exact  parametric  algorithms  based  on the root-finding  methods,  including  bisec-
tion  method,  Newton’s  method,  secant  method  and  false  position  method,  respectively,  for  the  global
optimization  of  MIFPs.  We  also propose  an inexact  parametric  algorithm  that can potentially  outperform
the  exact  parametric  algorithms  for some  types  of  MIFPs.  Extensive  computational  studies  are  performed
to demonstrate  the efficiency  of  these  parametric  algorithms  and  to compare  them  with  some  general-
purpose  mixed-integer  nonlinear  programming  methods.  The  applications  of the  proposed  algorithms  are
illustrated through  two  case  studies  on process  scheduling.  Computational  results  show  that  the  proposed
exact  and  inexact  parametric  algorithms  are  more  computationally  efficient  than  several  general-purpose
solvers  for  solving  MIFPs.

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

A mixed-integer fractional programming (MIFP) problem has an
objective as a ratio of two functions, and includes both discrete and
continuous variables. A general form of MIFP can be stated as the
following problem (P):

max
{

Q (x) = N(x)
D(x)

|x ∈ S
}

(P)

where the variables x contain both continuous and discrete vari-
ables, the feasible region S is nonempty, compact, bounded and the
denominator function D(x) is always positive in S, i.e. D(x) > 0 for
x ∈ S (Frenk & Schaible, 2009). The numerator function N(x) and the
denominator function D(x) can be linear or nonlinear.

1.1. MIFP applications in process systems engineering

MIFP problems arise from a variety of real world applications
(Schaible, 1981). Major MIFP applications in process systems engi-
neering can be generally categorized into three types.

The first one is to optimize the productivity of a process system,
which can usually be measured by the performance per unit of time
or the process output per input. These include, but are not limited to
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overall cost or profit over the makespan, the resource generation or
consumption rate, and the product yield per raw material or utility
consumption. Production scheduling problems can be formulated
as a mixed-integer linear fractional programming (MILFP) problem
by optimizing the productivity subject to the mixed-integer lin-
ear constraints (Capón-García, Bojarski, Espuña, & Puigjaner, 2010;
Shah, Pantelides, & Sargent, 1993). Cyclic process operations prob-
lems (Chu & You, 2012, 2013; Pinto & Grossmann, 1994) might
involve the tradeoffs between inventory cost and fixed cost in the
objective function that would lead to a mixed-integer quadratic
fractional program (MIQFP).

Another important MIFP application is optimization for sus-
tainability. Although overall environmental impact is usually used
as the objective function for process optimization problems, envi-
ronmental impact per functional unit could sometimes be a more
appropriate objective function from the life cycle assessment per-
spective, especially for the problems focusing on the performance
of products, rather than that of the entire process. Recent MIFP
applications in this area include environmental-conscious sustain-
able scheduling of batch processes (Capón-García et al., 2010; Yue
& You, 2013) and sustainable design of supply chains (Yue, Kim, &
You, 2013).

The third MIFP application field is on the optimization for return
rate, such as return on investment, return on cost and return on
risk. The return rate is usually modeled by profit dividing the cap-
ital, revenue, asset or risk. One example is that capacity planning
problems can be formulated as an MILFP problem to simultaneously
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optimize the decisions of capacity investment, inventory manage-
ment, and production planning by maximizing the return over
operating assets (Bradley & Arntzen, 1999). Portfolio selection
problems can use financial return over risk as the objective func-
tion. Supply chain design problems can also be formulated as
an MILFP by optimizing the total return over capital investment
(Uddin & Sano, 2010) or market share capture per unit cost (Hua,
Cheng, & Wang, 2011).

1.2. MIFP theory and algorithms

The nonlinear relaxation of an MIFP (by relaxing the integer
variables to continuous variables with corresponding upper and
lower bounds) is a continuous fractional program. Due to the ratio
term in the objective function, fractional programs are in general
non-convex nonlinear optimization problems (Bazaraa, Sherali,
& Shetty, 2006). Various solution methods for continuous frac-
tional programs have been proposed (Schaible, 1981). Charnes and
Cooper (1962) proposed an exact linear programming reformula-
tion of the continuous linear fractional program. An alternative
approach is to solve the associated dual problem of the variable
transformed fractional program that could be efficient for a class
of quadratic fractional programs (Schaible, 1976). Another popu-
lar solution method was first introduced by Martos and Andrew
Whinston (1964) and Jagannathan (1966) and they named it as
the so-called “parametric” approach. The main idea of this para-
metric approach is to solve an equivalent parametric problem of
the fractional program. Dinkelbach (1967) extended the paramet-
ric approach to solve the continuous, nonlinear fractional programs
using the Newton’s method. There are also several variants based on
this parametric approach but using different methods for updating
the parameters (Schaible & Ibaraki, 1983).

Although earlier work mainly focuses on fractional pro-
gramming problems with only continuous variables, solution
methods for MIFP problems drew significant attentions recently.
MIFP problem is a special class of mixed-integer nonlinear
programming (MINLP) problem. Thus, MIFP problems can be
solved with the general-purpose MINLP algorithms (Floudas,
1999), such as the generalized Benders decomposition (Geoffrion,
1972), branch-and-bound method (Gupta & Ravindran, 1985),
the outer-approximation method (Duran & Grossmann, 1986;
Viswanathan & Grossmann, 1990), the branch-and-cut method
(Quesada & Grossmann, 1992), the extended cutting plane method
(Westerlund & Pettersson, 1995), the branch-and-reduce method
(Tawarmalani & Sahinidis, 2005), the outer-approximation-based
global optimization method (Kesavan & Barton, 2000a, 200b;
Kesavan, Allgor, Gatzke, & Barton, 2004), just to name a few.
However, due to the nature of nonconvexity and the presence
of integer variables, solving large-scale MIFP problems directly
using the general-purpose MINLP methods might be computation-
ally intractable. Moreover, local MINLP solvers such as DICOPT
(outer-approximation algorithm) and SBB (simple branch-and-
bound algorithm) might not guarantee the global optimality of the
solution and may  lead to suboptimal solutions if they are used for
solving the MIFP problems. As will be shown through the compu-
tational results in Sections 3 and 4, the global optimizer BARON
11.3 might not be able to return good feasible solutions of large-
scale MIFP problems within reasonable computational time limit.
Therefore, there is a need of developing efficient and tailored global
optimization algorithms for solving large-scale, non-convex MIFP
problems.

Most tailored MIFP solution algorithms in the literature focus on
the special case of MILFP problems. Anzai (1973) investigated the
properties of integer fractional programming problems. Granot and
Granot (1977) developed valid cutting planes based on the Charnes-
Cooper transformation for solving MILFP problems. A global

optimization approach based on the branch-and-bound method
and variable transformation to solve 0–1 fractional programs was
proposed by Li (1994), which was extended by Wu  (1997) to
derive stronger cuts for the 0–1 fractional programs. Chang (2002)
proposed an approximate approach to solving posynomial frac-
tional programming problems by deriving the linear programming
relaxation of the problem based on piecewise linearization tech-
niques. Yue, Guillén-Gosálbez, and You (2013) proposed an exact
mixed-integer linear programming (MILP) reformulation for MILFP
problems, although it cannot be applied to mixed-integer non-
linear fractional programs. An algorithm based on the parametric
approach was  proposed to solve integer linear fractional program-
ming problems by Ishii, Ibaraki, and Mine (1977). Pochet and
Warichet (2008) and You, Castro, and Grossmann (2009) showed
that the parametric approach is very efficient for solving MILFP
models for cyclic scheduling, but their studies were not extended
to the general mixed-integer nonlinear fractional programs that
would be addressed in this paper.

1.3. Outline of this paper

The goal of this paper is to propose novel and efficient algorithms
based on the parametric approach for solving MIFP problems, and
to illustrate their effectiveness of solving process scheduling prob-
lems. We first show that the parametric approach for continuous
fractional programs is applicable to the mixed-integer linear and
nonlinear fractional programs. To solve the resulting parametric
problem, which is equivalent to the original MIFP problem, we con-
sider four one-dimension root-finding algorithms, including the
bisection method, the Newton’s method, the secant method and
the false position method. These are all globally convergent exact
methods with at least linear convergence rates. We  further pro-
pose a novel, inexact parametric algorithm based on the Newton’s
method for solving the equivalent parametric problem. We  show
that this new algorithm has a linear convergence rate, but it could
be much more computationally efficient in each iteration than the
exact parametric algorithms. Thus, the inexact parametric algo-
rithm can potentially require shorter total computational times
than the exact parametric algorithms for some types of MIFPs.

We conduct extensive computational studies based on the ran-
domly generated instances, in order to illustrate the efficiency of
the proposed parametric algorithms for solving large-scale MILFP
and MIQFP problems, and also to compare their performance with
three general-purpose MINLP methods. Two applications of these
algorithms in process operations are presented at the end of this
paper.

The novel contributions of this paper are summarized below:

• Four efficient exact parametric algorithms for solving large-scale
MIFP problems based on the application of existing root-finding
algorithms;

• An inexact parametric algorithm based on the Newton’s method
for solving special structured MIFP problems, and the theoretical
investigation of its convergence properties;

• Detailed comparison between the proposed parametric
approaches and the general-purpose MINLP algorithms (DICOPT,
SBB, BARON 11.3) for solving large-scale MILFP and MIQFP
problems;

2. Parametric algorithms for solving MIFP problems

2.1. Equivalent parametric formulation and its properties

Considering the following parametric problem (Pq):

F(q) = max
{

N(x) − q · D(x)|x ∈ S
}

for q ∈ R
1 (Pq)



Download English Version:

https://daneshyari.com/en/article/172479

Download Persian Version:

https://daneshyari.com/article/172479

Daneshyari.com

https://daneshyari.com/en/article/172479
https://daneshyari.com/article/172479
https://daneshyari.com

