
Computers and Chemical Engineering 57 (2013) 10– 23

Contents lists available at ScienceDirect

Computers and Chemical Engineering

j ourna l ho me p age : w ww.elsev ier .com/ locate /compchemeng

Block-oriented modeling of superstructure optimization problems

Zev Friedman1, Jack Ingalls2, John D. Siirola ∗, Jean-Paul Watson
Sandia National Laboratories, Discrete Math and Complex Systems Department, P.O. Box 5800, MS 1326, Albuquerque, NM 87185-1326, USA

a r t i c l e i n f o

Article history:
Received 3 October 2012
Received in revised form 1 April 2013
Accepted 3 April 2013
Available online 17 April 2013

Keywords:
Superstructure optimization
Generalized disjunctive programming
Stochastic programming
Algebraic modeling language

a b s t r a c t

We present a novel software framework for modeling large-scale engineered systems as mathematical
optimization problems. A key motivating feature in such systems is their hierarchical, highly struc-
tured topology. Existing mathematical optimization modeling environments do not facilitate the natural
expression and manipulation of hierarchically structured systems. Rather, the modeler is forced to “flat-
ten” the system description, hiding structure that may be exploited by solvers, and obfuscating the
system that the modeling environment is attempting to represent. To correct this deficiency, we propose
a Python-based “block-oriented” modeling approach for representing the discrete components within
the system. Our approach is an extension of the Pyomo library for specifying mathematical optimization
problems. Through the use of a modeling components library, the block-oriented approach facilitates
a clean separation of system superstructure from the details of individual components. This approach
also naturally lends itself to expressing design and operational decisions as disjunctive expressions over
the component blocks. By expressing a mathematical optimization problem in a block-oriented manner,
inherent structure (e.g., multiple scenarios) is preserved for potential exploitation by solvers. In par-
ticular, we show that block-structured mathematical optimization problems can be straightforwardly
manipulated by decomposition-based multi-scenario algorithmic strategies, specifically in the context
of the PySP stochastic programming library. We illustrate our block-oriented modeling approach using
a case study drawn from the electricity grid operations domain: unit commitment with transmission
switching and N − 1 reliability constraints. Finally, we demonstrate that the overhead associated with
block-oriented modeling only minimally increases model instantiation times, and need not adversely
impact solver behavior.

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Process design and expansion planning are cornerstones of the
Process Systems Engineering literature. While there are many chal-
lenges involved in design and planning, a central issue is managing
discrete choices throughout the process: which chemical path-
way to exploit, how many trays in a distillation column, how to
arrange columns in a separation train, where to build a plant,
where to site a distribution system, etc. In each of these exam-
ples, one approach to the problem is to systematically construct
a mathematical “superstructure” describing all possible discrete
alternatives, and then rely on a numerical optimization algorithm
to determine a single best realization (Grossmann, 1996). While
conceptually straightforward, actually implementing such super-
structures as mathematical optimization problems (i.e., programs)

∗ Corresponding author. Tel.: +1 505 284 5419; fax: +1 505 844 4728.
E-mail addresses: jdsiiro@sandia.gov (J.D. Siirola),

jwatson@sandia.gov (J.-P. Watson).
1 Current address: Department of Computer Sciences, University of Wisconsin-

Madison, Madison, WI 53706-1685, USA.
2 Current address: Department of Electrical Engineering, Stanford University,

Stanford, CA 94305, USA.

is an arduous task that requires careful bookkeeping. In particular,
existing modeling languages for specifying mathematical programs
generally lack the capability to specify superstructure optimization
problems in a hierarchical manner that mirrors the physical system
structure. Instead, the modeler must generate a “flat” mathematical
description of the superstructure, which both significantly compli-
cates the modeling effort (specifically with respect to validation
and readability) and masks structure that may ultimately be used
by a solver, if properly exposed. Further complicating the design
problem is that the decision-maker must make these discrete deci-
sions in the face of uncertainty (e.g., in material prices, demands,
and construction times). Although systematic approaches exist for
expanding – via Monte Carlo sampling – a deterministic model
into a stochastic model, the process is rather tedious and typically
implemented by hand as a “one-off” activity.

In this paper, we present a unified, systematic software
infrastructure for modeling superstructure-based optimization
problems based on the Pyomo3 open source optimization mod-
eling environment (Hart, Laird, Watson, & Woodruff, 2012; Hart,

3 Pyomo: Python Optimization Modeling Objects: https://software.sandia.
gov/pyomo.

0098-1354/$ – see front matter © 2013 Elsevier Ltd. All rights reserved.
http://dx.doi.org/10.1016/j.compchemeng.2013.04.008

dx.doi.org/10.1016/j.compchemeng.2013.04.008
http://www.sciencedirect.com/science/journal/00981354
http://www.elsevier.com/locate/compchemeng
http://crossmark.dyndns.org/dialog/?doi=10.1016/j.compchemeng.2013.04.008&domain=pdf
mailto:jdsiiro@sandia.gov
mailto:jwatson@sandia.gov
https://software.sandia.gov/pyomo
https://software.sandia.gov/pyomo
dx.doi.org/10.1016/j.compchemeng.2013.04.008

Z. Friedman et al. / Computers and Chemical Engineering 57 (2013) 10– 23 11

Watson, & Woodruff, 2011). Pyomo provides native Python support
for expressing structured algebraic optimization models. Pyomo
additionally includes extensions to support the representation of
generalized disjunctive programs (GDPs) (Raman & Grossmann,
1994), and includes automated implementations of the standard
transformations of GDPs into mixed-integer programs via both
Big-M and Convex Hull relaxations (Lee & Grossmann, 2000).
Borrowing from capabilities found in simulation modeling envi-
ronments, Pyomo provides “block-oriented” algebraic modeling
facilities that allow the modeler to explicitly represent a hierar-
chical superstructure and connections between sub-components
independent of the actual variables and equations employed within
the individual sub-components. This separation greatly simplifies
model management, allowing the modeler to easily substitute dif-
ferent component representations or propose new superstructures.
Similarly, block-oriented modeling facilities component re-use and
simplifies the process of model validation. Further, the open nature
of the Pyomo modeling environment facilitates the construction of
custom optimization algorithms that can directly leverage the block
structure of a superstructure optimization model. For example, we
address the issue of solving multi-scenario mathematical programs
via the PySP4 stochastic programming package (Watson, Woodruff,
& Hart, 2012). PySP is built on the Pyomo library and can automati-
cally generate the extensive form of a multi-scenario program given
a deterministic Pyomo model and a characterization of parameter
uncertainty, expressed as a discretized scenario tree. Additionally,
PySP provides a general implementation of the Rockafellar and
Wets (1991) progressive hedging scenario-based decomposition
algorithm, including extensions to support the solution of prob-
lems with discrete decision variables (Watson & Woodruff, 2011).
Both Pyomo and PySP are distributed and installed within the larger
Coopr library for optimization5, co-developed by Sandia National
Laboratories, the University of California Davis, and Texas A&M
University.

We demonstrate our modeling system through a daily oper-
ations problem for an electricity distribution system: unit
commitment with transmission line switching, subject to N − 1
reliability constraints. In this example, we explicitly model alter-
native decisions via disjunctive programming constructs. Both
generating technologies and transmission segments are modeled
as discrete blocks, completely separating the description of the
distribution superstructure from that of the individual network
components. This separation provides for a more understand-
able and abstracted description of the superstructure optimization
problem, and ultimately allows us to rapidly explore alternative
transmission approximations (e.g., DC or AC power flow, with or
without line loss) and different generation technologies (e.g., new
carbon sequestration and/or renewable generation technologies).
Our approach also facilitates the rapid expression of the super-
structure under different structural simplifications (e.g., single bus,
aggregated buses, or full network model).

The remainder of this paper is organized as follows. We
begin by introducing our block-oriented modeling approach in
Section 2. The balance of the paper is organized around our case
study problem, that of unit commitment with transmission switch-
ing, subject to N − 1 reliability constraints. This problem is intro-
duced in Section 3, specifically by considering the traditional “flat-
tened” mathematical programming formulation. We provide an
alternative, block-oriented description of the basic formulation in
Section 4; there, both the block syntax and basic GDP constructs are

4 PySP: Python Stochastic Programming: https://software.sandia.gov/trac/coopr/
wiki/PySP.

5 Coopr: A Common Optimization Python Repository: http://software.sandia.gov/
trac/coopr.

illustrated. We present computational results of our framework in
Section 5, focusing on both the need for significant preprocessing
capabilities when dealing with hierarchically structured optimiza-
tion models and the overhead associated with such capabilities.
Finally, we conclude in Section 6 with a summary of our results,
and steps toward future research.

2. Motivation and modeling approach

A significant challenge in constructing algebraic optimiza-
tion models for engineering decision support is the dichotomy
between the graph-like and highly structured representations used
to describe the engineering problem and the generally unstruc-
tured or “flat” algebraic form required by optimization modeling
environments and solvers, e.g., including AMPL (Fourer, Gay, &
Kernighan, 1990, 2002) and GAMS (Brooke, Kendrick, & Meeraus,
1988; Bussieck, Meeraus, & Kallrath, 2003). In the case of the
former, capabilities for expressing hierarchical structure in both
the models and the generated matrix forms for input to solvers
are notably absent. To address this challenge, we propose to
formulate superstructure optimization models using the “equa-
tion block” language constructs newly available in the Pyomo
mathematical programming library. A Pyomo equation block is a
collection of modeling components (e.g., sets, parameters, vari-
able, constraints, and sub-blocks). Pyomo equation blocks have
many features in common with other block-oriented optimiza-
tion modeling environments, notably adopting key concepts from
JModelica.org (Åkesson, Årzén, Gäfvert, Bergdahl, & Tummescheit,
2010), SML (Colombo, Grothey, Hogg, Woodsend, & Gondzio, 2009),
and ASCEND (Piela, 1989). However, Pyomo is unique in its ability to
support expressing, composing, and manipulating generic equation
blocks within an algebraic modeling language for mathematical
programming.

An equation block (or simply a block) represents a single compo-
nent in a superstructure system and consists of the sets, parameters,
variables, and constraints that describe the behavior of that compo-
nent. This concept is analogous to the model construct in Modelica
(Modelica, 2012) and ASCEND, and the block construct in SML.
Individual Pyomo blocks then form the “nodes” in the graph-like
engineering representation of the superstructure. A key focus of
Pyomo blocks that is not present in structured approaches like
SML is support for abstract composition of block-oriented mod-
els. To facilitate connecting a block (component) to other blocks
in a superstructure model, each block declares a series of con-
nectors that represent its interface to the rest of the model. A
Pyomo connector is very similar to the connector concept in Mod-
elica: it is a named collection of one or more objects that can be
referenced and manipulated as a distinct entity. Arcs in the super-
structure representation are implemented simply by “connecting”
connectors together. However, unlike Modelica, which connects
connector pairs using an explicit connect(a,b) function, connec-
tions in Pyomo can be any relational expression involving one or
more connectors. This simple mechanism provides a powerful sep-
aration of concerns: the definition of the system superstructure
relies only on the list of blocks and connectors, and is indepen-
dent of both the component constraints and the variables that
are associated with the connectors. This separation is analogous
to the concept of encapsulation in object-oriented programming:
an object contains internal (“private”) data and methods, and only
communicates with other objects through well-defined interfaces.
In the case of block-oriented modeling, a block’s sets, parameters,
variables, and constraints are encapsulated within the block, and
the connectors define the interface of that block with the rest of
the model. While Pyomo blocks do not enforce a formal notion of
“private variables”, we have found that preserving encapsulation

https://software.sandia.gov/trac/coopr/wiki/PySP
https://software.sandia.gov/trac/coopr/wiki/PySP
http://software.sandia.gov/trac/coopr
http://software.sandia.gov/trac/coopr

Download	English	Version:

https://daneshyari.com/en/article/172494

Download	Persian	Version:

https://daneshyari.com/article/172494

Daneshyari.com

https://daneshyari.com/en/article/172494
https://daneshyari.com/article/172494
https://daneshyari.com/

