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a b s t r a c t

This paper proposes a practical approach to extreme value estimation for small samples of observations
with truncated values, or high measurement uncertainty, facilitating reasonable estimation of epistemic
uncertainty. The approach, called the likelihood-weighted method (LWM), involves Bayesian inference
incorporating group likelihood for the generalised Pareto or generalised extreme value distributions and
near-uniform prior distributions for parameters. Group likelihood (as opposed to standard likelihood)
provides a straightforward mechanism to incorporate measurement error in inference, and adopting flat
priors simplifies computation. The method's statistical and computational efficiency are validated by
numerical experiment for small samples of size at most 10. Ocean wave applications reveal shortcomings
of competitor methods, and advantages of estimating epistemic uncertainty within a Bayesian frame-
work in particular.

& 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Extreme value estimation characterizes the tail of a probability
density distribution, and often requires extrapolation beyond what
has been observed (Coles et al., 2001). Extrapolation is motivated
by extreme value theory for the asymptotic distribution of large
values from any max-stable distribution. A basic assumption in
fitting an extreme value model to a sample is that observations are
independently and identically distributed. This assumption usually
holds for the rarest and severest of ocean wave events (e.g. the
storm peaks over threshold of significant wave heights in a tro-
pical cyclone at a location). The trade-off between sample size and
adequate tail fit, and the fact that measurement errors on most
extreme observations tend to be large, render the analysis
problematic.

The increasing availability of high quality measurements and
hindcasts means that the metocean engineer is often blessed with
huge samples for estimation of return values for design purposes.
Extreme value modelling is then a large-scale computational task,
within which the effects of non-stationarity and spatial depen-
dence can be estimated (Jonathan and Ewans, 2013). However,
there are many other applications where large samples of high
quality data are still not available. The metocean engineer is then
required to provide design values from small samples of typically
poor quality. For such analysis, uncertainties in extreme value

parameters and return value estimates are large and often difficult
to estimate well. The effective number of influential observations
in estimating extreme events with very low probability, such as at
the ten thousand year return period level, may be small even in
samples corresponding to a hundred years of observations. The
goal of this paper is to explore a method for extreme value esti-
mation useful for small samples (of size at most 10) of poor quality
data, which provides realistic estimation of epistemic model un-
certainty. The approach, called the likelihood-weighted method
(LWM), involves Bayesian inference for the group generalised
Pareto (or generalised extreme value) likelihood and uniform prior
distributions for parameters. Group likelihood provides a
straightforward mechanism to incorporate measurement error;
adopting flat priors simplifies computation.

Statistical models exhibit two types of uncertainty (Bitner-
Gregersen and Skjong, 2009). Aleatory uncertainty represents the
inherent randomness of nature and physics; it is intrinsic and
cannot be reduced. Epistemic uncertainty represents our limited
knowledge, and can be reduced (e.g.) by increasing sample size or
reducing sample measurement error. Realistic estimation of epis-
temic uncertainty is critical to reliable extreme value modelling.
We will demonstrate that estimation methods such as maximum
likelihood provide poor estimates of epistemic uncertainty from
small samples of poor quality.

The organisation of the article is as follows. In Section 2, we
review methods in extreme value analysis with emphasis on un-
certainty quantification from poor data. A description of LWM, our
new estimation method, is given in Section 3. In Section 4, LWM's
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statistical and numerical efficiency is validated through numerical
experiments. An application to observed extreme wave height
data is considered for further discussion in Section 5, followed by
conclusion in Section 6.

2. Extreme value estimation for small samples measured with
error

2.1. Extreme value theory

The central limit theorem provides an asymptotic distributional
form (the Gaussian distribution) for the mean An ( )= ( ) ∑ =n X1/ j

n
j1

of n independent observations of identically-distributed random
variables …X X X, , , n1 2 , regardless of the underlying distribution.
Analogously, extreme value theory provides an asymptotic dis-
tributional form for independent observations from any of a large
class of so-called max-stable distributions (Kotz and Nadarajah,
2000). The limiting forms for extreme values of block maxima Mn

( = ( … ))X X Xmax , , , n1 2 were given by Jenkinson (1955), and were
later rationalised into one generalised extreme value (GEV) dis-
tributional form. Pickands (1975) and Balkema and De Haan (1974)
derived the generalised Pareto (GP) distribution for peaks over
threshold (POT) by considering the logarithms of the GEV.

GEV and GP are three-parameter distributions, with parameters
shape ξ, scale s and location μ (for GEV) or extreme value
threshold ψ (for GP). Cumulative distribution functions (cdfs, FGEV
and FGP respectively) for these distributions are given in Eqs.
(1) and (2). Other distributional forms are used for extreme value
estimation, including the Weibull and log-normal distributions e.g.
Ochi (2005), Muir and El-Shaarawi (1986). Here we focus on GEV
and GP, given their natural asymptotic motivation and wide ap-
plication:
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These distributional forms are correct asymptotically for block
maxima and peaks over threshold, but only approximately for fi-
nite samples. Increasing sample size for fitting is desirable to re-
duce estimated parameter bias and uncertainty, but often is
achieved at the expense of quality of fit of an extreme value dis-
tribution to the largest values in the sample (e.g. by reducing block
size for GEV, or reducing extreme value threshold for GP). We do
not address this trade-off directly in this work; rather, we assume
that the sample is drawn from the extreme value distribution to be
estimated, and concentrate on estimating parameters and
uncertainty.

2.2. Parameter estimation

There are many possible approaches for parameter estimation
in extreme value analysis. Popular schemes include maximum
likelihood (ML), the method of moments, probability weighted
moments (PWM), L-moments and Bayesian inference (Muir and

El-Shaarawi, 1986). Graphical methods have also been proposed,
but these are not recommended for quantitative work. Other
empirically-derived estimation methods such as Goda's method
(Wada and Waseda) lack generality. Methods based on moments
or likelihoods are most common in the literature (Palutikof et al.,
1999).

For small samples, moment-based methods such as PWM and
L-moments, are considered better than ML (in terms of bias and
mean square error) for point estimation of parameters (Hosking
et al., 1985). Here our interest is not in deriving point estimates,
since large epistemic uncertainty is obviously unavoidable, and
quantification of the epistemic uncertainty of much greater im-
portance. For both ML and PWM, confidence intervals can be es-
timated by the so-called delta method, or the profile likelihood
method; both are motivated by consideration of asymptotic be-
haviour, and strictly valid for large samples. Smith and Naylor
(1987) considers extreme value estimation for a three-parameter
Weibull distribution using maximum likelihood for sample size of
over 40, and discusses the resulting unusual likelihood shape. In
some applications, even a sample size as small as 20 is difficult to
gather. This is the motivation for the current work: we focus on
extreme value estimation from sample sizes of at most 10.

Resampling methods such as bootstrapping are also used for
uncertainty quantification. The simplest resampling scheme draws
random re-samples with replacement from the original sample
(Efron, 1979, is easy to implement and widely used. Uncertainty
quantification from resampling is rather ad hoc in nature, certainly
compared with Bayesian inference. We will illustrate the short-
comings of a simple bootstrap method for small samples in Section
4.

2.3. Bayesian inference

Bayesian methods exploit both the sample likelihood and prior
distributions for parameters in inference. The favourable perfor-
mance of Bayesian inference in extreme value estimation from
small samples has been discussed (Coles and Powell, 1996). One
advantage of the Bayesian approach is the flexibility offered to
estimate unusually shaped likelihood surfaces (Smith and Naylor,
1987).

The basic equations of Bayesian inference are described below.
The sample likelihood θ( )L D; of parameter(s) θ for sample

= { } =D xi i
n

1 is interpreted as the probability of the sample given
parameters

∏θ θ θ( | ) = ( ) = ( | )
( )=

f D L D f x; .
3i

n

i
1

The probability of the sample is then

∫ θ θ( ) = ( | ) ( ) ( )θ
f D f D dF , 4

where we can interpret θ( )dF as θ θ( )f d for continuous prior den-
sity θ( )f for θ. We estimate the posterior distribution of θ using
Bayes theorem

θ θ θ( | ) = ( | ) ( )
( ) ( )

f D
f D f

f D
.

5

The posterior θ( | )f D can be used, amongst other things, to estimate
credible intervals for parameters. The posterior predictive dis-
tribution ( | )g x D of any function θ( | )g x is then the expected value of
that function under the posterior distribution θ( | )f D for θ. The
posterior predictive distribution therefore captures both epistemic
and aleatory uncertainty

( ) ∫θ θ θ θ( | ) = ( | ) = ( | ) ( | ) ( )θ|g x D E g x g x f D d . 6D
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