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a b s t r a c t

Diffraction of waves past two vertical thin plates on the free surface is studied theoretically and ex-
perimentally. A particular attention is paid to the wave motions depending on the relationship between
the wavelength (λ) and the width (b) between the two plates for a given draft (d) and water depth (h).
For d/h¼0.19, at resonance modes when b/λ¼0.245 (first), 0.695 (second), 1.11 (third), 1.55 (fourth), etc.,
the overall transmission features the maximum with no reflection. In the first mode, the water column
between the plates moves up and down with no wave motions. In the second mode, it shows the fun-
damental standing wave motion. In the remaining modes, it shows another standing wave motions with
relatively higher frequencies. As d/h increases (0.1–0.4), the resonance points move to values b/λ¼0, 0.5,
1, 1.5, etc., and, at those resonance points, the peaks of reflection and transmission coefficients become
more sharp and narrow. The loss of energy of incoming waves is also observed at every transmission in
the two plate system, and, in particular, more energy loss near a resonant frequency. In addition, it is
found that energy is lost mainly due to the transmission process not the reflection process.

& 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Two-dimensional diffraction of linear progressive waves has
been an important subject in the fields of wave barriers and wave
energy converters such as OWC (Oscillating Water Column). To
understand underlying physics, many theoretical and experi-
mental studies have been carried out with reference to the case of
wave diffraction passing a single vertical thin plate and two ver-
tical thin plates on the free surface. First, for the case of wave
diffraction passing a single vertical thin plate, it is well known that
the transmission increases as the wavelength increases, or the
reflection increases as the wavelength decreases. Assuming in-
viscid and irrotational fluid flow, Wiegel (1960) calculated analy-
tically the relative amount of transmitted wave amplitude com-
pared to the incoming wave amplitude without considering the
reflected waves. In his theory, he assumes that the net transmitted
wave energy behind the thin plate is equal to the fraction of the
incoming wave energy passing below the thin plate. However
analytically found transmitted wave amplitudes do not agree with
those from his experiment. Although widely adopted as a first
approximation as a closed-form solution, the neglect of reflected
waves unavoidably results in considerable errors in the overall
energy conservation before and after the diffraction. To overcome

this, Kriebel and Bollmann (1996) performed a similar analytical
inviscid calculation including the effect of reflected waves, but
their calculation also cannot satisfy the overall conservation of
energy before and after the diffraction. The reason is that both
theories neglect the existence of evanescent or parasitic waves
near the plate, and only progressive waves are considered. More-
over, not all the boundary conditions are not satisfied on the plate
and below the plate, where the fluid velocity is zero on the plate
and both the fluid velocity and the pressure (or the velocity po-
tential) are continuous below the plate. Compared to these, a more
rigorous mathematical theory has been applied to this problem by
Losada et al. (1992). With the assumption of inviscid and irrota-
tional fluid flow, the velocity-potential based Laplace equation
subject to all the boundary conditions on the plate and below the
plate is solved numerically, where the existence of many parasitic
waves on the plate are now all accounted for (Losada et al., 1992).
The resultant overall wave energy is conserved before and after
the diffraction. The same problem was solved by Porter and Evans
(1995) using Galerkin method and the result is the same as Losada
et al. (1992).

For the case of wave diffraction passing two vertical thin plates
on the free surface, it was theoretically and experimentally found
that there exist resonant conditions where the overall transmis-
sion and reflection feature extrema at particular wavelengths.
Approximate analytical solutions are proposed by Srokosz and
Evans (1979) and Ohkusu (1974) based on the assumption that the
plates are spaced far enough for the local wave field in the vicinity
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of one plate not to influence the other plate (wide-spacing ap-
proximation). The approximation is equivalent to saying that the
wavelength is small compared to the distance between the two
plates. The applicability of this approximation is compared to the
experiment by Stiassnie et al. (1986). The comparison between the
theory and the experiment is in a good agreement in terms of the
overall transmission and reflection behaviors according to the
wavelength. However, at resonant wavelengths, the number of
experimental data is not enough to fit the sharp peaks predicted
by the theory. For more general cases without approximations
aforementioned, Wu and Liu (1988) exactly solved the oblique
wave diffraction problem passing two finite-width plates on the
free surface. With the assumption of inviscid and irrotational fluid
flow, the velocity-potential based Laplace equation subject to all
the boundary conditions on the two plates and below the two
plates is solved numerically, where the existence of many parasitic
waves on the two plates are now all considered. The resultant
overall wave energy is conserved before and after the diffraction.
Their solution method for the two plates is equivalent to the one
for a single plate by Losada et al. (1992). The former uses a so-
called eigenfunction expansion method and the latter uses a least
square method, which are mathematically equivalent to each
other. Recently, the same problem was studied by McIver (1985)
and Das et al. (1997). In their analytical formulations, by splitting
the velocity potential into symmetric and antisymmetric parts,
they treat the original double-plate problem as two single-plate
problems. However, in terms of their solution methods, the former
uses the eigenfunction expansion method while the latter uses the
Galerkin method. In the abovementioned studies, the plates are
assumed to be impermeable. For the case of permeable plate
system, Isaacson et al. (1999) solved the problem of wave dif-
fraction past two slotted or permeable vertical thin plates on the
free surface and Liu and Li (2011) solved the problem of wave
diffraction past two vertical thin plates, one permeable and the
other impermeable. They all use the eigenfunction expansion
method.

Many existing studies concentrate on the overall reflection and
transmission passing the two-plate system without paying much
attention to the wave motion between the two plates, which is not
much of a concern in the design of wave barriers. However, for the
case of wave energy converters such as OWC (Oscillating Water
Column), not only the overall reflection and transmission char-
acteristics outside the plates but also the local wave motion be-
tween the plates are important subjects to be considered. In par-
ticular, at resonant conditions, i.e., no reflection and total trans-
mission conditions, the detailed wave motion between the plates
has hardly been reported theoretically or experimentally and this
is the main subject of this paper. A particular attention is paid to
the wave motions depending on the relationship between the
wavelength (λ) and the width (b) between the two plates for a
given draft (d) and water depth (h). To summarize in advance, for
d/h¼0.19, it is both experimentally and theoretically found that
the resonance occurs when b/λ¼0.245, 0.695, 1.11, 1.55, etc.

In this paper, the same analytical and numerical approach as
the ones by Losada et al. (1992) and Wu and Liu (1988) is extended
and applied to the problem of diffraction of 2-D waves passing two
vertical thin plates on the free surface. The analytical formulation
and its numerical treatment are provided in Section 2. Then, as-
sociated experimental details are explained in Section 3. In Section
4, the comparison between the theory and the experiment is
shown, in terms of the overall reflection and transmission char-
acteristics and local wave motions between the two plates.

2. Theory

In Fig. 1, a schematic is shown for the analysis of the reflection
and transmission of left-going incident 2-D linear gravity waves
past two vertical thin plates (draft d, inter-distance b) on the mean
free surface, where the water depth is h. The origin is placed at the
intersection of the right plate and the mean free surface. Cartesian
coordinates system (x,z) is adopted with x-axis being horizontal
and the z-axis being vertically upward. The fluid domain is com-
posed of three regions. Region Ι includes left-going incident waves
and reflected waves (0ox o1, �hozo0), region II includes
transmitted waves past the right plate and reflected waves from
the left plate (–boxo0, –hozo0) and region III includes trans-
mitted waves past the left plate (–1oxo–b, –hozo 0). As-
suming that the fluid is inviscid and incompressible, and the flow
is irrotational, the velocity potentials ϕ1, ϕ2, ϕ3 in each region
which satisfy the Laplace equation can be written as follows, in
complex forms with the implication of taking the real part.

{ }( )ϕ φ= ( ) = ( )ω−x z t x z e j, , Re , ; 1, 2, 3 1j j
i t

where ω is the angular frequency, t is time. The corresponding
surface-wave elevation is

{ }( ) ( )ζ ζ= = ( )ω− +x t e j, Re ; 1, 2, 3 2j
i kx t

0

where k is the wavenumber. These velocity potentials and wave
elevations satisfy following linearized boundary conditions. The
bottom boundary condition is
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∂
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The kinematic free-surface boundary condition is
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The dynamic free-surface boundary condition is
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1
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Then, the velocity potentials (time-independent part) which
satisfy boundary conditions Eqs. (3)–(5) can be expressed as

Fig. 1. Schematic of the reflection and the transmission of incident 2-D linear gravity waves past two vertical thin plates on the mean free surface, where the water depth is
h.
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