Ocean Engineering 122 (2016) 44-53

journal homepage: www.elsevier.com/locate/oceaneng

Contents lists available at ScienceDirect

OCEAN

ENGINEERING

Ocean Engineering

A real-time forecast model using artificial neural network for after-

@ CrossMark

runner storm surges on the Tottori coast, Japan

azk

Sooyoul Kim

, Yoshiharu Matsumi ¢, Shunqi Pan”, Hajime Mase €

2 Graduate School of Engineering, Tottori University, Koyama-cho Minami, Tottori 680-850, Japan
b School of Engineering, Cardiff University, The Parade, Cardiff CF24 3AA, UK
¢ Disaster Prevention Research Institute, Kyoto University, Gokasho, Kyoto, 611-0011, Japan

ARTICLE INFO

Article history:

Received 16 December 2015
Received in revised form

13 May 2016

Accepted 13 June 2016
Available online 23 June 2016

Keywords:

Storm surge forecasting
Artificial neural network
Typhoon

After-runner storm surge

ABSTRACT

The area of Sakai Minato on the Tottori coast, Japan, has suffered from water level increase between 15
and 18 h later after passing of typhoon (called as after-runner surge). To mitigate the impact of the extra
water level rise, it requires a fast and accurate after-runner surge forecasting with a lead time of 24 h for
the coastal community. The present study demonstrates the effect of selecting appropriate data sets for
an artificial neural network-based after-runner surge forecast model on the accuracy of the surge pre-
dictions. In this study, 16 different data sets, consisting of the local meteorological and hydrodynamic
parameters collected from local stations on the Tottori coast as well as the typhoon-characteristics, are
applied to the newly-developed after-runner surge forecast model in Sakai Minato. The models results
are carefully examined to determine the optimal data sets, which can yield accurate surge forecasting
over a relatively long-lead time (e.g., 24 h). It was found that the combination of surge level, sea-level
pressure, drop of sea-level pressure, longitude and latitude of typhoon, sea surface level, wind speed and

wind direction are the optimal data sets for predicting the surge level with the lead time of 24 h.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Storm surge forecasting is crucial to a decision-making process
in the coastal management to reduce flooding risk in low-lying
regions, and fast and accurate models are often desirable for
forecasting the storm surge. A conventional method is to use
process-based numerical prediction models, which are computa-
tionally expensive to run. An alternative method is to use ad-
vanced machine learning models such as artificial neural network
that are driven by data from the relation between storm surge
levels and corresponding information such as sea surface levels
(=astronomic tide level+surge level), winds, sea level pressures
and typhoon-characteristics (typhoon location, central atmo-
spheric pressure, and maximum wind speeds near typhoon cen-
ter). In comparison with conventional models, neural network-
based models have advantages of fast computational time in a few
tens of minutes to forecast output data, after the model is trained.
The neural network-based models can be developed with any in-
dependent and dependent parameters (e.g., Tu, 1996). The neural
network is like a set of equations with defined coefficients to de-
tect relationships between output and input parameters. The
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development process of neural network-based models is empirical
and many methodological issues remain to be solved, and the
results are also difficult to use for gaining understanding of
physics.

In the majority of studies, such alternative models were de-
veloped to predict the accurate value with a lead time before surge
levels occur, using the artificial neural network (ANN) trained by
observed data of surge, typhoon-induced meteorological and hy-
drodynamic parameters (e.g., Lee, 2006, 2008, 2009; Tseng et al.,
2007). In these studies, the alternative models were aimed at
predicting the surge levels up to six hours ahead. These studies
showed that the use of the combination of typhoon-character-
istics, local wind speeds, local wind directions, sea level pressures
and storm surge levels is the best data set for forecasting the surge
levels with a relatively short-lead time (up to six-hours ahead) in
which their maximum surge levels usually coincide with typhoon
landfalls on the Pacific Coast of Taiwan.

On the other hand, the historical record of storm surge along
the Tottori coast, Japan, indicates that a sea level rise occurs 15—
18 h later after typhoon passing (called as after-runner surge) as a
result of Coriolis force (Kim et al., 2014). Therefore, the coastal
managers in this region require accurate and rapid surge-level
forecasting to provide the information on the after-runner surge at
least 18 h in advance. However, in such a region, alternative
models for surge level forecast with this lead time of 24 h have not
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been examined.

In the present study, we develop an alternative model to
forecast the after-runner surge levels with the lead times of 5, 12
and 24 h that are trained by the combinations of parameters of
hydrodynamic, meteorological and typhoon characteristics that
were collected on the Tottori coast. Then, a series of numerical
experiments is conducted to determine the optimal combinations
of input parameters required by the ANN forecast model. The se-
lection of the proper input data sets is crucial to the development
of ANN forecast model on the Tottori coast, because once it is
determined, essential data can be effectively collected and or, if
necessary, reproduced using numerical surge simulations. To ex-
amine it, the sensitivity of the ANN forecast model to possible
combinations of typhoon-related training data is investigated.
From our results, for instance, it was found that a proper data set
for the surge level forecast made in 24 h in advance should consist
of surge level, sea-level pressure, drop of sea-level pressure,
longitude and latitude of typhoon, sea surface level and wind
speed and wind direction. Thus, it is believed that the character-
istic of after-runner surge as described above might be important
to select proper parameter sets model associated with the lead
times in the ANN forecast. Therefore, optimizing the ANN forecast
model with the appropriate training data is essential for the after-
runner surge forecast with a relatively long-lead time on the
Tottori coast.

Cluster analysis is effective to look for appropriate data sets to
be used in ANN by discovering a similarity between parameters in
a data set (e.g., Dreyfus, 2002). One of the clustering methods is a
dendrogram, which estimates a distance (the similarity is higher if
the distance is closer) between parameters and then, groups as-
sociated parameters into a set. However, the appropriate data sets
for the 24 h-lead time surge forecast obtained from the selection
method used in the present study are different from those
grouped by the dendrogram; for instance, the present selection
method shows that the appropriate data set for it is the combi-
nation of surge level, sea level pressure, drop of sea-level pressure,
typhoon location (longitude and latitude), wind speed and wind
direction, while the dendrogram illustrates that individuals are
separated into the different groups (see, Fig. 9), which will be
discussed in Section 5.

The present study demonstrates the selection of the appro-
priate combination of input parameters for the surge level forecast
with the lead times of 5, 12 and 24 h in the ANN models in Section
2. In Section 3, we provide the explanation of collected data for
training, validating and testing for the ANN models, and a series of
experiments. Then, results are given in Section 4. In addition,
discussion is done in Section 5. Finally, the conclusions are given in
Section 6.

2. Storm surge prediction model using artificial neural
network

2.1. Overview of artificial neural network

Artificial Neural Network (ANN) is one of the data processing
techniques. In the majority of studies, ANNs have been applied
with significant emphasis on the predictions of: tides (e.g., Deo
and Chaudhari, 1998; Lee et al., 2002; Lee, 2004), sea surface levels
(Sztobryn, 2003; Makarynskyy et al., 2004; Makarynska and Ma-
karynskyy, 2008), waves (Deo and Naidu, 1999; Deo et al., 2001),
tsunamis (Mase et al., 2011), storm surges (Lee, 2006, 2008, 2009;
Tseng et al., 2007), breakwaters (Mase et al., 1995; Mase and Ki-
tano, 1999; Mase et al., 2007).

ANNSs can be classified into feedforward (static) networks and
feedback (recurrent or dynamic) networks (e.g., Dreyfus, 2002). A

feedforward neural network implements nonlinear functions of
their inputs. Those nonlinear functions are neurons, which are
defined by nonlinear, weighted and biases functions. Therefore,
the feedforward neural network is represented as a set of neurons
connected together, in which the information flows in the forward
direction from the inputs to the outputs. On the other hand, a
feedback neural network is governed by nonlinear discrete-time
recurrent equations.

In the present study, the feedforward neural network with a
single layer of input, hidden neuron and output is used as shown
in Fig. 1. The back-propagation optimization technique was em-
ployed to train the network in this study. The back-propagation
algorithm is a popular, computationally economical method for
computing gradients of cost functions (e.g., Dreyfus, 2002). We
used the Levenberg-Marquardt algorithm that has advantage in
terms of the reduction of computational time among several back-
propagation algorithms of the conjugate gradient method, the
scaled conjugate gradient method, the Broyden-Fletcher-Gold-
farb-Shanno method and the Levenberg-Marquardt method. The
parameters of the Levenberg-Marquardt method are given in Ta-
ble 1. As described by Mase et al. (2011) and Dreyfus (2002), the
feedforward neural network should not only fit training data sets,
but also generalize to provide satisfactory results for surge level
forecasts. If the feedforward neural network uses too many
weights and trained too strict, outputs would be of high accuracy,
but it might involve a large number of less meaningful computa-
tions for non-trained data. On the other hand, if it uses too few
weights, it is not able to learn from the training data efficiently.
Here, we use the regularization method of early stopping before
the performance function reaches a pre-defined threshold (for
example 10-6 m) of the mean squared error between the observed
and predicted surge levels. The iteration number for training was
10,000 at maximum. The functions of hyperbolic tangent sigmoid
transfer and linear transfer are used in the hidden and output
layers, respectively. The phases of training and validating are taken
for surge level forecasts with relatively long-lead times of 5,12 and
24 h. All collected data from one event were used for the training
phase. In the validation phase, the trained model is applied to one
typhoon event to forecast a time series of surge levels with a given
lead time. The test phase is done by one event as done in the
validation phase. The detailed description for the data taken in the
present study will be given in Sections 2.2 and 2.3.

2.2. Input parameters

In the conventional method, a process-based numerical storm
surge prediction model is driven by typhoon-induced wind and
pressure fields, which are generally estimated from either a
parametric wind and pressure model or an atmospheric general
circulation model. Consequently, the accuracy of storm surge
predictions is significantly dependent on the quality of the me-
teorological data, and in general there is a significant level of un-
certainty of the estimated meteorological data. In the present
study, to minimize such an uncertainty in the ANN forecast model
for the surge level with the given lead time, we gathered the
hourly measured meteorological and hydrodynamic data remotely
delivered to an operating system from the observation stations on
the Tottori coast. We selected five local meteorological stations at
Hamada, Matsue, Yonago, Ama and Saigo, and one hydrographic
station at Sakai Minato, as shown in Fig. 2(b), operated by Japan
Meteorological Agency. In addition, typhoon characteristics such
as typhoon position (longitude and latitude), central atmospheric
pressure and highest wind speed near the typhoon center are
collected.

According to Hiyajo et al. (2011), the surge level of 100 year
return period at Sakai Minato is approximately 0.63 m, estimated
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