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a  b  s  t  r  a  c  t

Approximate  dynamic  programming  (ADP)  is a model  based  control  technique  suitable  for  nonlinear
systems.  Application  of  ADP  to distributed  parameter  systems  (DPS)  which  are  described  by  partial  dif-
ferential  equations  is  a  computationally  intensive  task.  This  problem  is  addressed  in literature  by  the  use
of reduced  order  models  which  capture  the  essential  dynamics  of the  system.  Order  reduction  of  DPS
described  by  hyperbolic  PDEs  is a  difficult  task  as  such  systems  exhibit  modes  of  nearly  equal  energy.  The
focus  of  this  contribution  is  ADP  based  control  of  systems  described  by hyperbolic  PDEs using  reduced
order  models.  Method  of  characteristics  (MOC)  is  used  to  obtain  reduced  order  models.  This  reduced
order  model  is  then  used  in  ADP  based  control  for  solving  the  set-point  tracking  problem.  Two  case
studies  involving  single  and  double  characteristics  are  studied.  Open  loop  simulations  demonstrate  the
effectiveness  of  MOC  in  reducing  the  order  and  the  closed  loop  simulations  with  ADP  based  controller
indicate  the  advantage  of  using  these  reduced  order  models.

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Several typical chemical engineering systems such as fixed bed
reactors, plug flow reactors, etc. are inherently nonlinear. The
dynamic behavior and spatial variation of key state variables are
accurately captured by first principle partial differential equation
(PDE) models. These PDE models are valid in a larger operating
range as compared to lumped parameter ODE models and have
been extensively used for design and analysis. It is expected that
use of such PDE models in model based controllers will result in
improved closed loop performance. However, the use of these mod-
els in online control applications is limited. There are two key issues
that need to be addressed: the computational effort involved in
solving nonlinear optimal control problems and the fact that the
state space form of the PDE models is infinite dimensional.

Typical model based controllers such as model predictive con-
trol (MPC) require solution of a multi-step optimization problem
with a finite horizon cost. An alternative is to formulate a dynamic
programming problem which involves the solution of single step
optimization problem with an infinite horizon cost. DP employs the
‘Bellman principle of optimality’ to obtain the ‘optimal cost-to-go’
values which is the optimal cost involved to reach the set-point
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starting from current state. This cost-to-go value is obtained for
all the points in the discretized state space. Function approxima-
tors are used to get the map  between cost-to-go values and the
points in the state space. The exponential increase in the number
of points in state-space as the state dimension increases which is
called ‘curse of dimensionality’ in literature is addressed by formu-
lating an approximate version, viz., ADP by focusing on the relevant
state space region traced by other sub-optimal controllers. The
cost-to-go values approximate the optimal infinite horizon cost and
hence the use of longer horizon can be avoided, thereby reducing
the computational load significantly.

In recent years, ADP has been successfully applied to sev-
eral applications such as a complex bio-reactor characterized
by multiple steady states (Kaisare, Lee, & Lee, 2003), integrated
plants involving a reactor and distillation column with a recycle
(Tosukhowong & Lee, 2009), systems described by partial differ-
ential equations (Midhun & Kaisare, 2011; Padhi & Balakrishnan,
2003), etc. However application of ADP to distributed parameters
system is a challenging task because of the high computational
effort in solving PDEs. In addition, a high order state space represen-
tation of DPS results in computational issues in obtaining cost-to-go
estimate using function approximators (Lee, Kaisare, & Lee, 2006).
This necessitates the use of reduced order models for application
of ADP based control to DPS.

Model order reduction techniques generate a finite dimensional
state space model that describes the original system dynamics
fairly accurately while requiring lower computational effort. There
are several order reduction techniques that have been proposed
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to develop reduced order models suitable for control. Method of
lines (MOL) is a conventional order reduction method where the
spatial derivative at each nodal point is calculated through appro-
priate finite difference based approximation (Dochain, Babary, &
Tali-Maamar, 1992; Midhun & Kaisare, 2011; Sorensen, Jorgensen,
& Clement, 1980). Proper orthogonal decomposition (POD) is
another popular method which is suitable for parabolic PDE sys-
tems (PDEs involving a second order spatial differential operator)
which exhibit modes of different energy. Reduced order models
generated using POD have significantly lower dimension compared
to those generated by the finite difference method and hence been
extensively used in the design of finite dimensional controllers
for systems described by parabolic differential equations (Padhi &
Balakrishnan, 2003; Pitchaiah & Armaou, 2010; Shvartsman et al.,
2000; Shvartsman & Kevrekidis, 1998).

Convection dominated systems such as plug flow reactors, fixed
bed reactors, heat exchangers, etc., are described by a set of first
order hyperbolic PDEs. The use of finite difference method for
such system requires very large number of states to satisfactorily
describe the system. Also order reduction through modal decom-
position is not possible as the spatial operator of hyperbolic PDE has
modes with nearly equal energy (Christofides & Daoutidis, 1998).
Hence optimal control techniques which retain the infinite dimen-
sional nature of the systems have been reported (Balas, 1986; Choe
& Chang, 1998; Lo, 1973; Wang, 1966). However design and imple-
mentation of such infinite dimensional optimal control techniques
is complicated. On the other hand, finite dimensional controllers
are very well developed and hence there is a need to develop a
method which reduces the order of the first order hyperbolic PDEs
for design of finite dimensional controllers.

Method of characteristics (MOC) is a conventional solution
method for solving first order hyperbolic PDEs and has also been
used in the model based control. A combination of MOC  with slid-
ing mode control was proposed for nonlinear hyperbolic systems
(Hanczyc & Palazoglu, 1995). A output feedback control method-
ology for systems described by a first order hyperbolic PDE has
been developed (Christofides & Daoutidis, 1996). Lyapunov based
robust controller was developed for nonlinear hyperbolic PDE
(Christofides & Daoutidis, 1998). A combination of finite difference
method with MOC  has been employed for the control of convec-
tion dominated parabolic systems (Shang, Forbes, & Guay, 2007).
Finite difference schemes which retain the FIR property of co-
current reactor have been proposed and used for the design of
controllers (Choi, 2007; Choi & Lee, 2004, 2005). Model predictive
control (MPC) based on MOC  for fixed bed reactor, plug flow reactor
and catalytic flow reversal reactor have been proposed in literature
(Fuxman, Forbes, & Hayes, 2007; Mohammadi, Dublijevic, & Forbes,
2010; Shang, Forbes, & Guay, 2004). Though there are applications
involving MOC, order reduction using MOC  and its subsequent use
in model based control is not discussed in the literature. However,
the focus of these has been use of MOC  as a solution technique,
rather than a model order reduction technique. Further in these
works, simple approximations such as assuming constant values
for the nonlinear terms in the resulting ODEs is employed. In our
work we propose an improved method which results in a accurate
reduced order model of significantly lower order and complexity.

The primary focus of this article is two-fold. One involves
proposing better approximation in the implementation of MOC  to
hyperbolic PDEs which results in reduced order model. As already
mentioned ADP has the advantage of improved closed loop perfor-
mance with reduced computational load and applying this concept
to PDEs systems requires reduced order models. So second part of
this work involves applying the reduced order model from MOC
in ADP based controller. In the closed loop simulation, we allow
for plant-model mismatch by using reduced order model for pre-
diction and optimization and higher order model from MOL  as a

‘plant’. Though the use of reduced order from MOC  in ADP  requires
interpolation at every sampling instant, we  have shown that the
resulting closed loop response shows better behavior compared to
the nonlinear MPC. To summarize, the contribution of the paper
is a new methodology to obtain reduced order models using MOC
for systems described by quasi-linear hyperbolic PDEs. Further the
robustness of this reduced order model is illustrated through the
closed loop simulation involving ADP based control.

The organization of this paper is as follows: Initially the the-
ory behind approximate dynamic programming and the problem
in using high dimensional state space models is explained. Next,
method of characteristics as a order reduction method is introduced
and the methodology of obtaining reduced order models through
MOC is explained in detail. This is followed by presentation of the
closed loop simulation results using ADP employing MOC  for the
two  case studies involving single and double characteristics. The
overall advantages and shortcomings in employing reduced order
models from MOC  in ADP based control for DPS system are then
summarized.

2. Approximate dynamic programming

Consider a system represented by the following nonlinear
discrete-time state space model:

xk+1 = f (xk, uk)

yk = g(xk)
(1)

where xk represents system state, uk represents manipulated inputs
and yk represents controlled outputs at the kth time instant, respec-
tively. A standard optimal control problem involves minimization
of the following stage-wise performance criterion:

Vp =
i=k+p−1∑

i=k

�(xi, ui) (2)

Here, �(xi, ui) is the single stage cost incurred at state xi on imple-
menting the control move ui, and p is the prediction horizon. In the
infinite-horizon problem, we let p =∞.  A typical single-stage cost in
set-point tracking problem is:

�(xi, ui) = (yi+1 − ysp)T Q (yi+1 − ysp) + �uT
i R�ui (3)

The optimal infinite-horizon cost-to-go function is defined as

Jopt(xk) = min
uk,uk+1,...

V∞

= min
uk,uk+1,...

i=∞∑
i=k

�(xi, ui)
(4)

This optimal cost-to-go function satisfies the following Bellman
equation:

Jopt(xk) = min
uk

[�(xk, uk) + Jopt(xk+1)] (5)

for all states xk∈ X. Note that Jopt(xk+1) represents the optimal cost-
to-go values at the successor state, xk+1 = f(xk, uk). The computation
of Jopt(x) that satisfies Eq. (5), either analytically or numerically, is
the central crux of dynamic programming (DP). The correspond-
ing optimal input move is computed from the optimal cost-to-go
function as:

uopt
k

= argminuk
[�(xk, uk) + Jopt(xk+1)] (6)

Remark 1. Model predictive control is an open-loop optimal con-
trol policy. The finite-horizon optimization problem

argminuk,...,uk+p−1
Vp(xk) (7)
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