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a b s t r a c t

This paper reviews the research and development of the Envelope Peaks over Threshold (EPOT) method
that has taken place in the last three years. The EPOT method is intended for the statistical extrapolation
of ship motions and accelerations from time-domain numerical simulations, or possibly, from a model
test. To model the relationship between probability and time, the large roll angle events must be
independent, so Poisson flow can be used. The method uses the envelope of the signal to ensure the
independence of large exceedances. The most significant development was application of the generalized
Pareto Distribution (GPD) for approximation of the tail, replacing the previously used Weibull dis-
tribution. This paper reviews the main aspects of modeling the GPD, including its mathematical justi-
fication, fitting the parameters of the distribution, and evaluating the probability of exceedance and its
confidence interval.

Published by Elsevier Ltd.

1. Introduction

The rarity of dynamic stability failures in realistic sea condition
makes the problem of extrapolation inevitable. This can be illu-
strated in the following example. If we assume an hourly stability
failure rate of 10�6 h�1 (Kobylinski and Kastner, 2003), then we
can expect to see (on average) one failure every 1,000,000 h. If we
require 10 observations for a reliable statistical estimate; then we
need to simulate 10,000,000 h. Even if an advanced hydrodynamic
code could run in a real time and a cluster with 1000 processors is
dedicated to the task, it would take 10,000 h per condition
(combination of seaway, speed and heading) to perform the
assessment. The cost of the calculations prohibits direct simulation
in this manner.

Additionally stability failure is associated with large-amplitude
motions and is expected to be nonlinear. Indeed, capsize is related
to the ultimate nonlinearity – transition to another equilibrium. In
order to have enough fidelity to model this problem, the hydro-
dynamic code must be quite sophisticated (see a review by Reed
et al., 2014). The probability of capsizing is the topic of a multi-
year ONR research project titled “A Probabilistic Procedure for
Evaluating the Dynamic Stability and Capsizing of Naval Vessels”
(Belenky et al., 2016).

IMO document SLF 54/3/1, Annex 1 (IMO, 2011) defines intact
stability failure as a state of inability of a ship to remain within

design limits of roll (heel, list) angle combined with high rigid
body accelerations. This includes also partial stability failure when
a ship is subjected to a large roll angle or excessive accelerations,
but does not capsize. Following the same logic one could also
include an excessive pitch angle. As this study focuses on partial
stability failure, peak over threshold method (POT) was chosen
(Pickands, 1975). Introducing a threshold allows considering the
data that are more influenced by nonlinearity; this incorporates
changing physics into the statistical estimates.

To satisfy the requirement of independent peaks over thresh-
old, the peaks of envelope were used instead of the peaks of the
process itself (Campbell and Belenky, 2010). The review of this
research effort is available from Belenky and Campbell (2012). That
work included consideration of the relationship between prob-
ability and time, the probabilistic properties of peaks, application
of envelope theory and the extreme value distribution.

The relationship between time and probability is key to the
proper treatment of the partial stability failures. It may be mod-
eled with Poisson, which requires the independence of the failure
events. In the case of capsizing, the enforcement of Poisson Flow is
not required, since capsizing can only occur once per record (the
possibility of several capsizings within one record can be safely
ignored for practical cases). Belenky and Campbell (2012) also
review different ways of statistical characterization of the rate of
events, the only parameter of the Poisson flow.

Classical POT methods use the Generalized Pareto Distribution
(GPD) to approximate the tail of the distribution above a thresh-
old. However, under certain conditions the GPD may be right
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bounded, that is, there is some value above which the probability
of exceedances is zero. This is not a problem for conventional
statistical consideration, when we are interested in the quantiles
of the GPD (i.e., the probability is given and the level needs to be
found). In ship stability generally the failure level is known and
related to down flooding or cargo shifting angles and probability is
to be found. The physical meaning of the right bound was not clear
at that time (and still is not completely clear). As a result, the
Weibull distribution was used for modeling the tail.

Normally distributed wave elevation was the subject of study in
Belenky and Campbell (2012). This was a logical first test for these
techniques. The study concluded that the distribution of large
absolute values of peaks can be approximated by Rayleigh law. The
Rayleigh distribution is a particular case of Weibull distribution
when the shape parameter equals two. Thus, deviation of this
parameter from two may be suitable for representing nonlinearity
in a dynamical system.

To investigate the performance of a POT scheme based on the
Weibull distribution, a model representing ship motions with
realistic stability variation was used (Weems and Wundrow, 2013;
Weems and Belenky, 2015). It was found that Weibull distribution
does not have enough flexibility to approximate the tail of large-
amplitude ship motions and the consideration of the GPD was
started again.

Application of the GPD with EPOT produced very reasonable
results (Smith and Zuzick, 2015). The techniques used to fit GPD,
estimate the probability of exceedance of a given level and eval-
uate its uncertainty are described in Campbell et al. (2016, 2014)
and Glotzer et al. (2016) and briefly reviewed in the rest of
this paper.

2. Mathematical background

2.1. Distribution of order statistics

In order to understand why statistical extrapolation is possible
when the underlying distribution is unknown, we begin with
order statistics.

Consider a set of n independent realizations of random variable
z. Assume that the distribution is given in a form of a cumulative
distribution function (CDF) and probability density function (PDF).
Sorting the observed values from the largest to smallest we have:

yi ¼ sortðziÞ i¼ 1; :::;n ð1Þ

Indeed, for randomly selected values y and z:

pdfðyÞ ¼ pdfðzÞ; CDFðyÞ ¼ CDFðzÞ ð2Þ

Consider a value that happens to be k-th in the list (1rkrn). It
is a random number, because, if one generates another set of
realizations of variable z, and sorts them, another value will be the
k-th. This random number is referred as k-th order statistic. Like
any other random variable, yk has its own distribution. This dis-
tribution is (see, e.g. David and Nagaraja, 2003):

pdfðyjkÞ ¼ pdfðyÞ n!
ðk�1Þ!ðn�kÞ!U CDFðyÞð Þ k�1ð1�CDFðyÞÞn�k ð3Þ

2.2. Generalized extreme value (GEV) distribution

Consideration of distribution of the largest value (k¼1) when
the number of observations n grows, leads to a limit, known as
Generalized Extreme Value (GEV) distribution (see e.g. Coles,

2001):

pdfðxÞ ¼ 1
σ

1þξ
x�μ
σ

� �� 1þ 1
ξ

� �
Uexp � 1þξ

x�μ
σ

� �1
ξ

� �
ð4Þ

ξ is a shape parameter, σ is scale parameter (σ40); μ is a shift
parameter, Eq. (4) is non-zero for:

x4μ�σ
ξ for ξ40

xoμ�σ
ξ for ξo0

ð5Þ

and is zero otherwise. If the shape parameter ξ¼0:

pdfðxÞ ¼ 1
σ
exp

x�μ
σ

� �
Uexp �exp

x�μ
σ

� �� �
ð6Þ

for any values of x.
It is important that the limit (4)–(6) does not depend on the

distribution z. That means that all the extreme values have the
same distribution if one considers a sample of sufficient volume.
This is the essence of the extreme value theorem, sometimes
referred to as the Fisher–Tippet–Gnedenko theorem (see, e.g.,
Coles, 2001).

Direct application of the extreme value theorem for probabil-
istic assessment of dynamic stability can be found in McTaggar
(2000), and McTaggart and de Kat (2000). However, several issues
remained unresolved; including the question how large the sam-
ple should be (in terms of record length and number of records) to
claim limiting properties of GEV.

2.3. Generalized Pareto distribution (GPD)

The large sample volume needed for direct application of the
GEV is partially driven by the fact that only a single value (the
largest one from the time window) is used to find the parameters
of distribution. The desire to use more data leads to the idea of
peaks over threshold methods.

Take μ as a threshold and find the distribution of the data
exceeding this threshold, i.e., consider conditional probability. The
generalized Pareto distribution is derived from the GEV with the
threshold condition applied. The basic logic of this derivation is
available in Coles (2001). The GPD is expressed as

f ðxÞ ¼

1
σ 1þξx�μ

σ

� �� 1þ 1
ξ

� �
;

if μox; ξ40 ; or

μoxoμ�σ
ξ; ξo0

1
σexp �x�μ

σ

� �
;

if μox; ξ¼ 0

8>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>:

ð7Þ

where ξ is the shape parameter, σ is the scale parameter (σ40)
and μ is the threshold, above which, the GPD is believed to be
applicable. Zero-value of the shape parameter is an important
particular case, approximating the tail of some practically impor-
tant distributions, including normal and Rayleigh distributions.

Eq. (7) expresses the second extreme value theorem, referred
as Pickands–Balkema–de Haan theorem. It states that the tail of
independent random variables can be approximated with the GPD.
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