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a  b  s  t  r  a  c  t

Causality  inference  and  root  cause  analysis  are  important  for  fault  diagnosis  in  the  chemical  industry.  Due
to the  increasing  scale  and  complexity  of  chemical  processes,  data-driven  methods  become  indispensable
in  causality  inference.  This  paper  proposes  an  approach  based  on  the  concept  of  transfer  entropy  which
was  presented  by  Schreiber  in 2000  to generate  a causal  map.  To  get  a better  performance  in estimating
the  time  delay  of causal  relations,  a  modified  form  of  the  transfer  entropy  is  presented  in  this  paper.  Case
studies on  two  simulated  chemical  processes,  including  the  benchmark  Tennessee  Eastman  process  are
performed  to illustrate  the  effectiveness  of  this  approach.

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Elucidation of the cause-and-effect relationships among vari-
ables or events is the central aim of many studies in physical,
social, behavioral and biological sciences (Pearl, 2009). In the chem-
ical process industry, knowing the cause-and-effect relationships
means knowing the propagation path of a fault or a disturbance,
which is critical for alarm management, fault diagnosis, and inci-
dent/accident investigations. As a result, it is of great significance
to develop an effective and reliable method of causal inference and
root cause analysis.

There exist some techniques that are to some extent similar
to causal inference and root cause analysis, like HAZOP analy-
sis (Dunjó et al., 2010), and signed digraph (SDG)-based methods
(Maurya et al., 2004; Wang et al., 2009; Yang et al., 2010). But meth-
ods that rely on only process knowledge are often difficult to use
because of the increasing complexity and size of modern industrial
processes. Meanwhile, data-driven methods like cross-correlation
function (Bauer et al., 2008), and transfer entropy (Schreiber, 2000;
Bauer et al., 2007) can overcome such difficulties. However, meth-
ods based on statistics of data also have shortages that can lead to
ambiguities or false results and fail to discover the real causal struc-
tures. So the limitation of data-driven methods needs to be further
studied, and combining process knowledge with refined models
built by data-driven methods should be considered.

This paper is focused on causal inference based on transfer
entropy, and is organized as follows. Section 2 is an introduction
of transfer entropy and our modification to transfer entropy. In
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Section 3, the proposed causal inference approach is introduced.
Then case studies are demonstrated in Section 4.

2. Introduction to transfer entropy and proposed
modification

2.1. Introduction to transfer entropy

Based on the concept of information theory and information
entropy (Shannon & Weaver, 1948), Schreiber proposed the con-
cept of transfer entropy in 2000 to measure the asymmetric
interactions in a system. The calculation of transfer entropy is as
Eq. (1).
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wherein p(A,B) is a joint probability while p(A/B) denotes a con-
ditional probability. x and y represent two variables while xi and
yi represent their values at time i. x(k)

i
= [xi, xi−1, . . . , xi−k+1] and
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= [yi, yi−1, . . . , yi−l+1]. Transfer entropy represents the differ-

ence between the information entropy of xi+1 when both x(k)
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are known and that when only x(k)
i

is known. It is to measure
the decrease of x’s future uncertainty under the condition that y is
known.

It should be noted that when Schreiber’s definition transfer
entropy is based on the assumption that the system can be “approx-
imated by a stationary Markov process”, which means that the
current state of the system only depends on a certain length of its
past. If the Markov property cannot be satisfied, transfer entropy
may  fail to measure the causal relations in the system.
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Unlike mutual information, transfer entropy is in an asymmet-
ric form, which makes it possible to measure cause-and-effect
relationships. To consider time delay, which is common in many
practical situations, Bauer in 2007 incorporated h, the prediction
horizon, and rewrote the transfer entropy as Eq. (2).
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The probability density function (PDF) is estimated by a kernel
estimator. The kernel function K is centered at every sample point
and averaged to estimate the PDF, as shown in Eq. (3).

ˆp(x) = 1
N
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The Gaussian Kernel function chosen by Bauer is used here:
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According to Yang’s work in 2010,

� = c · � · N−1/5 (5)

wherein � is the standard deviation of the sample points, and
c = (4/3)1/5 ≈ 1.06.

For a multivariate case, the joint PDF is:

ˆp(x1, x2, . . . , xq) = 1
N

N∑
s=1

K(x1 − xs,1)K(x2 − xs,2) . . . K(xq − xs,q) (6)

For each univariate kernel function, parameter � is calculated by

�m = c · �i · N−1/(4+q), m = 1, 2, . . . , q (7)

Yang et al. in 2010 applied the Bauer’s form of transfer entropy
Eq. (2) to validate SDGs. In his work, the prediction horizon
was changed to maximize the transfer entropies and the trans-
fer entropies that are large enough will validate the existence of
the corresponding SDG arcs that represent the causal relationships
between process variables.

2.2. Modification to transfer entropy

With the Bauer’s form of transfer entropy that includes the vari-
able of prediction horizon, the prediction horizon that maximizes
the transfer entropy may  be a good estimation of the time delay
of the cause-and-effect. But as what Yang pointed out the time
delay inferred with this form of transfer entropy may  be inaccurate
sometimes.

In our opinion, the reason why Bauer’s transfer entropy fails to
estimate time delays sometimes is as follows. In Bauer’s transfer
entropy, the reference of future uncertainty’s decrease is x(k)

i
. As a

result, as the prediction horizon varies, the reference also varies.
Such a phenomenon seems unreasonable to determine the actual
maximized improvement of the prediction.

To solve this problem, a modified transfer entropy form is pro-
posed next. In our modified transfer entropy, the x(k)

i
in Eq. (2)

is replaced by x(k)
i+h−1. As a result, the reference is fixed and does

not change with h. In our opinion, such a modification will make
the maximization more reliable and make it possible to estimate

Fig. 1. Transfer entropy vs. h under (a) Bauer’s form and (b) the modified form.

time delay with prediction horizon. The modified form of transfer
entropy is as Eq. (8).

t(x|y) =
∑

xi+h,x(k)
i+h−1

,y(l)
i

p(xi+h, x(k)
i+h−1, y(l)

i
)log

p(xi+h|x(k)
i+h−1, y(l)

i
)

p(xi+h|x(k)
i+h−1)

(8)

wherein x(k)
i+h−1 = [xi+h−1, xi+h−2, . . . , xi+h−k] and other symbols are

the same as Eq. (2).
To illustrate our idea, here is a simple example. Suppose there

is an auto-regressive model (see Eq. (9)). y is random and normally
distributed at each moment i, while x is determined by both y and
x itself:

x(i) = x(i − 1) + y(i − 5) (9)

Thus, we can expect the time delay from y to x to be 5.
Both Bauer’s form and our modified form of transfer entropy

are applied, and let k = l = 1 and h be an integer between 1 and 10.
Fig. 1(a) and (b) shows transfer entropies as a function of h under
both forms.

From Fig. 1(a) we can see Bauer’s form can find two local
maximums at h = 5 and h = 8 respectively. Moreover, the latter one
is a little bit larger than the former one. That means this form can-
not find time delay exactly for this simple example. However, our
modified form finds only one maximum at the right h.
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