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a b s t r a c t

This work presents the results of the fit of three bivariate models to twelve years of significant wave
height and mean zero-crossing period data of swell, wind sea components, and combined sea states
from Australia. The Conditional Modelling Approach defines the joint distribution from a marginal
distribution of significant wave height and a set of distributions of mean zero-crossing period
conditional on significant wave height. The second model fits the Plackett model to the data, and the
last one applies the Box–Cox transformations to the data with the aim of making it approximately
normal to fit a bivariate normal distribution to the transformed data. The conditional model with a
lognormal distribution for the significant wave height and lognormal distributions for the zero-crossing
period gave the best fit for the total sea states and for the wind component. In case of the swell
component the conditional model with a Weibull distribution to the significant wave height and a
lognormal distribution to the mean zero-crossing period gave a relatively close fit to the data.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

The joint distribution of the spectral parameters that govern
the sea states, namely the significant wave height (Hs) and the
mean (Tz) or peak period (Tp), is an essential element to be able to
derive the design wave loads for marine structures.

Several methods have been adopted to study bivariate distribu-
tions describing the wave climate (e.g. Repko et al., 2004). One of
the first approaches was proposed by Ochi (1978), who adopted
the bivariate lognormal distribution, resulting from an exponential
transformation of the bivariate Normal distribution. This approach
although elegant and simple to apply, requires that the logarithm
of the data looks normally distributed, and although this may
happen for low and moderate Hs it starts not being applicable for
large wave heights. A bivariate lognormal with correction for
skewness (Fang and Hogben, 1982) was an attempt to improve
the bivariate lognormal model. A measure of skewness was
included in a term modifying the lognormal form of the marginal
distribution of Hs.

A model based on the marginal distribution of Hs and condi-
tional distributions of Tz (or Tp) is an intuitive one that increases
the flexibility of modelling and has been adopted by Haver (1985),
Guedes Soares et al. (1988), and Bitner-Gregersen and Haver
(1989).

The marginal distribution of Hs is the most important one that
governs the intensity of the loads induced on marine structures
and it is thus the starting point of this approach. Several
approaches have been adopted to model the marginal distribution
as summarized for example by Isaacson and Mackenzie (1981),
Muir and El-Shaarawi (1986) or Guedes Soares and Scotto (2001).
Then the various marginal distributions of Tz conditional on Hs

must be fit to the data so as to build the bivariate distribution.
Haver (1985) used a combination of lognormal distribution for

lower values of Hs and Weibull for the tail region, calling it Lonowe
distribution of Hs, and adopted lognormal distributions for Tz (or
Tp), while Mathisen and Bitner-Gregersen (1990) used the 3 para-
meter Weibull distribution for Hs and lognormal distributions for
Tz (or Tp), and concluded that this joint distribution performed
better than other joint Hs and Tp distributions.

Athanassoulis, et al. (1994) have proposed the use of the
Plackett bivariate model as a systematic and simple way of fitting
the bivariate distribution functions of Hs and Tz. The structure of
the Plackett model, even though not being completely general,
allows the specification of any two marginal distributions and
leaves the subsequent modelling of the dependence structure
to be made with the estimation of a parameter related to the
correlation between the variables.

Prince-Wright (1995) proposed maximum likelihood models of
joint environmental data. The main idea of this method is to use a
transformation of a joint environmental data set to a Gaussian
model using a variant of the transformation of Box and Cox (1964)
and to evaluate the transformation parameters by the maximum
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likelihood method. Bitner-Gregersen et al. (1998) have compared
this approach with the conditional modelling approach proposed
by Bitner-Gregersen and Haver (1989), showing that each one has
advantages and problems. The main advantage of the conditional
modelling approach is the fact that it is more flexible and in
several cases one environmental parameter, e.g., significant wave
height, dominates the loading which means that the errors in this
model are not so crucial. Also an advantage of this model is that
for a data set which has a low correlation coefficient, the model
enables to increase the weight in the fit of the data range of
interest. But the problem is that, there is no theoretical method for
choosing the best form of defining the joint function. The main
advantage in the case of the Maximum Likelihood Model (MLM) is
that by modelling the simultaneous data as multivariate normal
random variables, using the Gaussian transformation, a joint
density is defined a priori (Bitner-Gregersen et al., 1998). A
disadvantage in this model is that it is affected by the adopted
procedure for transforming variables from the physical to the
normal space, and the model does not allow putting emphasis on
one environmental parameter. It was shown in Bitner-Gregersen
et al. (1998) that the conditional modelling approach and the joint
model based on the Box–Cox transformations have a similar
performance with respect to the waves.

Bitner-Gregersen and Guedes Soares (1997) presented an over-
view of probabilistic modelling approaches, which was later
updated by Guedes Soares and Scotto (2011), and by
Bitner-Gregersen (2011) who presented an exhaustive review of
the joint long term probabilistic modelling of met-ocean para-
meters giving particular attention to the Conditional Modelling
Approach (CMA). The application of these joint environmental
models to different datasets presented their accuracy and their
limitations. The models, Maximum Likelihood Model (MLM) and
the CMA use the complete probabilistic information obtained from
observations of the variables, e.g., significant wave height, thus
these models, seem to be the most suitable for establishing joint
probabilities.

Ferreira and Guedes Soares (2000, 2002), used a kernel density
to model transformed data, respectively in the univariate and
bivariate cases. This has the advantage of avoiding the choice and
estimation of parametric models which will impose a specific
behaviour of the data. The data was first transformed by a Box–Cox
transformation, which has performed well in transforming long
term wave data in regression models (Cunha and Guedes Soares,
1999), even in the case of bivariate models of Hs and Tz (Guedes
Soares and Cunha, 2000). Athanassoulis, and Belibassakis (2002)
have also proposed the use of kernel densities as being flexible
approaches for univariate and multivariate data. Soares and
Guedes Soares (2007) have compared the application of these
approaches to a specific data set, clarifying thus the differences in
their performance.

The approaches just discussed have modeled the sea states as
being described by one set of Hs�Tz. However, Guedes Soares
(1984) have studied combined sea states composed of a swell
and a wind sea component, showing that they have a large

probability of occurrence (Guedes Soares 1991, Lucas, et al. 2011).
As demonstrated by several authors (e.g., Guedes Soares, 1984;
Guedes Soares and Nolasco, 1992) in several situations the sea
states are a result of the combination of more than one wave
system, and the spectrum exhibits in this case two peaks. The
double-peaked wave spectra can be observed whenever a swell
system joins with a locally wind-driven system. The swell is
characterized by low frequency wave systems that were generated
in distant storms. This component of the spectrum is represented
by the low frequency peak in the measured wave spectra. As
demonstrated by Guedes Soares (1991), the percentage of occur-
rence of a double-peaked spectrum could be of the order of 25% in
different occasions, however, the probability of occurrence tends
to decrease as the significant wave height of the sea state would
increase.

This implies that a proper modelling of the wave climate would
need to represent both types of sea conditions as already noted by
Guedes Soares and Nolasco (1992) and also by Bitner-Gregersen
(2005). In fact, Guedes Soares and Nolasco (1992) have demon-
strated that these two sets of data follow different probabilistic
models.

The need of having a long term distribution for both compo-
nents of combined sea states is felt when conducting reliability
studies, which need the description of both wave components, as
shown by Teixeira and Guedes Soares (2009). Weather vanning
floating platforms tend to align to the main wave direction and can
be sensitive to other wave systems from other directions which
can excite roll motion and affect their operationally, especially in
the case of LNG platforms in particular if this occurs during
offloading operations (Pessoa et al., 2015; Sun et al., 2015). To
determine the conditions for response in the combined sea states
it is necessary to have different models for the larger waves to
which the platform will align and the lower seas that will excite
roll motion from the transverse direction. This was in fact the
motivation that started this study.

This work revisits the bivariate modelling of sea states, apply-
ing it both to the total sea state as defined by one pair of Hs�Tz
and to each separate set of swell and of wind sea components. It
has been observed that Tp is a more discriminating period
descriptor than Tz and several joint distribution models use it (e.
g. Haver, 1985). However in the case of combined sea states there
will be 2 or 3 different Tp, one for each wave system, and thus the
Tp of the overall sea state becomes a meaningless variable. This is
the reason why this work adopts the characteristic period of the
sea state T02, obtained from the zeroth and second moment of the
spectrum, although designating as mean period Tz, it is calculated
often from the spectral description being more accurately desig-
nated as the mean zero-crossing period T02.

This paper starts by describing the three methods for the
bivariate description, which are then applied to a data set from
Australia, with the characteristics that almost all sea states have a
swell and a wind sea component. The models are applied to the
total significant wave height and total wave period and to the

Nomenclature

Hs significant wave height
Tp peak period
T02, Tz mean zero-crossing period
m0 zero order moment
m2 second order moment
m0;T total zero order moment of the two components

m0;s zero order moment of the swell component
m0;w zero order moment of the wind sea component
T02,T total mean zero-crossing period
T02,s mean zero-crossing period of the swell component
T02,w mean zero-crossing period of the wind sea component
Hs,T total significant wave height
Hs,s significant wave height of the swell component
Hs,w significant wave height of the wind sea component
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