
On the linear stability of one- and two-layer Boussinesq-type
equations for wave propagation over uneven beds

Gonzalo Simarro a,n, Alejandro Orfila b, Carlos M. Mozos c, Rosa E. Pruneda c

a Marine Sciences Institute (ICM, CSIC), 08003 Barcelona, Spain
b IMEDEA, 07190 Esporles, Spain
c School of Civil Engineering (UCLM), 13005 Ciudad Real, Spain

a r t i c l e i n f o

Article history:
Received 26 May 2015
Accepted 14 July 2015
Available online 3 August 2015

Keywords:
Boussinesq-type equations
Wave propagation
Linear dispersion
Linear shoaling
Linear stability

a b s t r a c t

Bousssinesq-type equations are a powerful tool to model the wave propagation from intermediate
waters to the shore. By construction, these equations have a good performance in weakly dispersive
conditions, and a great effort has been done during the last 20 years to increase their range of application
to deeper waters; the improved equations introduce free coefficients that are chosen for this purpose.
Some of the improved sets of equations show instabilities when numerically solved over uneven beds. In
this work we show how these instabilities can be due to the equations (including the values of the
involved coefficients) and not to the numerical scheme. We further introduce new sets of coefficients
that optimize the linear performance while improving the linear stability of the equations.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

As water waves travel to the coast, the water depth, h, is
reduced from hundreds or thousands of meters in the open sea to
a few meters, and eventually zero, at the shore. In the open sea the
wave height, H, is much smaller than the water depth, so that
H=h⪡1. Conversely, in the nearshore region the wavelength, λ, is
usually much larger than the water depth, i.e. λ=h⪢1 (or kh⪡1,
with k� 2π=λ being the wavenumber). Now the horizontal velo-
city profile is nearly uniform in the water column and the wave
celerity is independent of the wave period, so that there is no
frequency dispersion. The very well-known Shallow Water Equa-
tions (SWEs) apply in this region.

There is an intermediate zone where H=h 1 and kh 1. The
Boussinesq Equations (BEs) were developed to represent water wave
propagation in this region. BEs can be seen as an extension of the
SWEs that includes dispersion in a perturbative way. BEs by Peregrine
(1967) were obtained for weakly dispersive and weakly non-linear
conditions. The extension to weakly dispersive but arbitrary (or
“fully”) non-linear conditions are very popular nowadays (Green
and Naghdi, 1976; Wei and Kirby, 1995; Madsen and Schaffer, 1998;
do Carmo, 2013), and are usually referred to as Serre's Equations, after
Serre (1953), or also as Boussinesq type Equations (BTEs hereafter).

BEs and BTEs have ensured a good performance under weakly
dispersive conditions (BEs for weakly non-linear conditions and
BTEs for arbitrary non-linear conditions), by construction. In order
to assess the performance under stronger dispersive conditions,
BEs and BTEs are linearized and compared to linear and fully
dispersive theories such as Airy and Mild Slope Equations (Dean
and Dalrymple, 1984). The comparison is made in terms of wave
celerity (linear dispersion) and wave shoaling over mild slopes
(linear shoaling). The weakly non-linear performance is, also,
usually compared to the second order Stokes theory for flat beds
(Schaffer, 1996). Since BEs and their corresponding BTEs are
identical in their linear weakly dispersive terms, the comparisons
give the same results using the BEs or their corresponding fully
non-linear extensions (BTEs).

Much of the research in this area during the last 20 years has been
devoted to improve the linear properties of the equations. Leaving
aside higher order (in dispersive terms) equations (Gobbi et al., 2000),
which include spatial derivatives of order five, three main different
approaches can be distinguished to this end: (i) Madsen and Sorensen
(1992) proposed an enhancement technique so as to introduce new
terms that improve the dispersive performance, and Beji and Nadaoka
(1996) proposed an alternative set of enhanced equations; (ii) Nwogu
(1993) introduced a new set of BEs written for the velocity at zα ¼ αh
(instead of the depth averaged velocity), and chose α¼ �0:53096 to
improve the linear dispersion up to kh� 3; the corresponding BTEs
(fully non-linear extension) were introduced by Wei et al. (1995); and
(iii) Lynett and Liu (2004) proposed a multilayer approach (previous
equations were one-layer). The above three techniques have been
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further combined: Madsen and Schaffer (1998) combined the first two
approaches, and Simarro et al. (2013) all three approaches. Actually,
Lynett and Liu (2004) already used the approach by Nwogu (1993)
within each layer. All the above BTEs include free coefficients which
are chosen so as to mimic the linear and fully dispersive theory. In
general, the more coefficients the better performance.

When applied to certain bathymetries (particularly when they
have steep slopes), the numerical solution of the above BTEs may
show instability problems. These instabilities may arise from the
equations themselves (depending on choice for the free coeffi-
cients), and not from the numerical scheme employed to solve
them. For instance, for the simplest flat bed case, the coefficient α
of Nwogu must be (this is shown in Section 3)

�1:58≲α≲�0:42; ð1Þ
for the equations to be linearly stable. Nwogu (1993) proposed
α¼ �0:53096, which falls within the above range. Similar condi-
tions are already known for other sets of equations, for the flat bed
case. These conditions do not ensure, however, the stability of the
equations for uneven bathymetries and, to the authors knowledge,
no further research has been done in this regard.

The goal of this work is to obtain the sets of coefficients that
optimize the linear properties of a wide range of BTEs while
improving the linear stability over uneven bathymetries.

The work is structured as follows: Section 2 introduces the sets of
BTEs considered and shows how to assess the linear dispersion and
linear shoaling errors in a new simple way; Section 3 introduces the
problem of the linear stability for these equations and presents the
strategy followed in Section 4 to obtain the convenient coefficients.
Section 5 shows the applications in the numerical solution of the
equations.

2. Governing equations

We consider one- and two-layer BTEs in this study. The
equations under consideration are fully described in Appendix A.
In this section we describe the equations only in terms of the free
coefficients that they introduce as well as in their linear
properties.

2.1. One layer equations

The one-layer BTEs analyzed here are those presented by Beji
and Nadaoka (1996) and by Simarro et al. (2013), shown in
Appendix A.1. Other systems of weakly dispersive and fully non-
linear equations are not analyzed here, but the same treatment
presented below is applicable.

The equations by Beji and Nadaoka (1996) were introduced as a
simpler alternative to those by Madsen and Sorensen (1992). They
include one free parameter, β, and have shown to be particularly
well conditioned to represent linear dispersion and shoaling
(Simarro, 2013). Beji and Nadaoka (1996) first derived their equa-
tions for weakly non-linear conditions (BEs); in Appendix A.1 we
introduce their fully non-linear extensions (BTEs).

The BTEs by Simarro et al. (2013) depart from the sets by
Madsen and Schaffer (1998) and Galan et al. (2012) to further
improve weakly non-linear and weakly dispersive performance,
and include eight free coefficients: α, αϵ, δ, δϵ, δh, γ, γϵ and γh. The
equations byWei et al. (1995) –and hence Nwogu (1993)–, Madsen
and Schaffer (1998), Kennedy et al. (2001) or Galan et al. (2012) are
recovered as particular cases setting some of these coefficients null
(Table 1).

The coefficients αϵ, δϵ and γϵ affect exclusively the non-linear
performance of the above BTEs. This work focuses on linear
aspects, which are independent of these three coefficients; for

completeness, however, the values of αϵ, δϵ and γϵ will be
provided following the strategy by Schaffer (1996). Also, in the
linear case, the equations K01-1 (Kennedy et al., 2001), W95-1
(Wei et al., 1995) and N93-1 (Nwogu, 1993) reduce to the same
equations, and here we will refer to them as N93-1 when dealing
with linear aspects. Similarly, S13-1 (Simarro et al., 2013), G12-1
(Galan et al., 2012) and M98-1 (Madsen and Schaffer, 1998)
coincide in the linear case, and we will refer to them as M98-1.

For later use, we recall that an alternative to ξ� kh to express
the range of validity of BTEs is κ �ω2h=g, with ω being the wave
angular frequency and g the gravitational acceleration. For linear
waves (Airy theory) κ ¼ ξ tanh ξ so that κ � ξ2 for ξ⪡1 and κ � ξ
for kh≳3. This number, κ, is proportional to the parameter h=λ0
used by other authors (Madsen et al., 1991; Nwogu, 1993), where
λ0 � 2πg=ω2 is the wavelength in deep waters.

2.2. Linear properties

Being c¼ω=k the wave celerity, the dispersion equation of the
one-layer BTEs is

c2

gh
¼

� �
κ

ξ2
¼ 1þρ1ξ

2

1þρ2ξ
2

1þρ3ξ
2

1þρ4ξ
2 �DðξÞ� �

; ð2Þ

where the coefficients ρj depend on β for B96-1, on α for N93-1
and on α, δ and γ for M98-1. Some of the coefficients ρj can be null.
For N93-1, e.g.

ρ1 ¼ ρ2 ¼ 0; ρ3 ¼ �3α2þ6αþ2
6

; ρ4 ¼ �α2þ2α
2

: ð3Þ

The error in the linear wave celerity (linear dispersion) is
defined as

ϵcðκÞ �
c
cA

�1; ð4Þ

where cA is the celerity obtained from the linear fully dispersive
theory (Airy). The error is expressed as a function of κ for the same
reasons argued by Galan et al. (2012).

It is known that ∂ω=∂k obtained from the above dispersion
equation does not satisfy A2cg ¼ constant, with A being the wave
amplitude (i.e. Beji and Nadaoka, 1996; Schaffer and Madsen,
1998). The proper procedure to assess the linear shoaling of BTEs
originally considered the so-called shoaling gradient (Madsen and
Sorensen, 1992), and, in order to obtain the error for the wave

Table 1
Free coefficients for the one-layer BTEs (marked with “✓”; “—” means “does not
apply”). B96-1: Beji and Nadaoka (1996); S13-1: one-layer Simarro et al. (2013);
G12-1: Galan et al. (2012); M98-1: Madsen and Schaffer (1998); K01-1: Kennedy
et al. (2001); W95-1: Wei et al. (1995); N93-1: Nwogu (1993).

Authors β α αϵ δ δh δϵ γ γh γϵ

B96-1 ✓ — — — — — — — —

S13-1 — ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

G12-1 — ✓ 0 ✓ ✓ ✓ ✓ ✓ ✓

M98-1 — ✓ 0 ✓ ✓ 0 ✓ ✓ 0
K01-1 — ✓ ✓ 0 0 0 0 0 0
W95-1, N93-1 — ✓ 0 0 0 0 0 0 0

Table 2
Free coefficients for the two-layer BTEs (marked with “✓”). L04-2 � Lynett and Liu
(2004), S13-2 � two-layer Simarro et al. (2013).

Authors α1 αϵ;1 β1 βϵ;1 α2 αϵ;2 δ δh δϵ γ γh γϵ

S13-2 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

L04-2 ✓ ✓ ✓ ✓ ✓ ✓ 0 0 0 0 0 0
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