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a  b  s  t  r  a  c  t

High  accuracy  models  can  be  obtained  by  using  different  types  of surrogate  models  that  accurately
approximate  equipment  phenomenological  models  and  can  be used  in  synthesis  problems,  leading  to
faster  and  more  precise  solutions.  Two  types  of  surrogate  models  are  used  to  approximate  equipment
phenomenological  models:  polynomial  and  neural  network-based.  In  some  cases,  these  surrogate  mod-
els are  not  able  to represent  more  complex  equipment.  An  original  methodology  to  reformulate  these
models  using  equations  from  shortcut  equipment  design  is proposed.  A  medium-size  case  study  involv-
ing  fifteen  units  is  presented.  The  synthesis  problem  is solved  in  a  short  computational  time,  leading
many  local  solutions.  Since  several  local  optima  objective  function  values  are  very  close to  each  other,
the  choice  of the  best  configuration  among  those  found  should  be  done  qualitatively,  because  the differ-
ences  among  the objective  function  values  are  not  significant  if compared  to the  accuracy  of  equipment
cost  correlations  in  the literature.

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Several methodologies were developed for the synthesis and
optimization of WN (water networks), which can be divided into:
mathematical programming (Faria & Bagajewicz, 2009; Galan &
Grossmann, 1998; Takama, Kuriyama, Shiroko, & Umeda, 1980a);
conceptual design (Freitas, Costa, & Boaventura, 2000) and pinch
analysis (Kuo & Smith, 1997; Wang & Smith, 1994). The first
technique shows more advantages when compared to the others,
because it takes into account all the possible system configu-
rations. The second one, conceptual design technique, is based
on the flow sheet built as from a critical equipment, follow-
ing sequentially through the other ones and the last, pinch
analysis, is based on the thermodynamical limitation of mass
transfer.

The research about synthesis and optimization of wastewater
networks started with Takama, Kuriyama, Shiroko, and Umeda
(1980b). In this work, the authors aimed to decrease the general
water consumption in a refinery by segregation and integration of
wastewater process streams, modeling the wastewater allocation
problem as a superstructure.

Although the equipment models employed in this case are
simple, the large number of both nonlinear terms and design
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possibilities (of the superstructure model), lead to difficulties to
solve the equation system. To address this problem, Takama and
coworker applied both penalty function and structure reduction
step to obtain a viable solution.

The WN research based on mathematical programming
approach was continued by Alva-Argáez, Kokossis, and Smith
(1998) who  modified the first model developed by Takama et al.
(1980b), assigning a binary variable to each possible stream connec-
tion. Furthermore, they fixed the outlet stream concentrations of all
the equipment, converting the initial NLP (nonlinear programming)
into an MILP (mixer integer linear programming).

Galan and Grossmann (1998) developed an MINLP (mixer inte-
ger nonlinear programming) for the WN problem. Moreover, they
created a heuristic methodology to find the global optimal solu-
tion for both the NLP originally modeled by Takama et al. (1980b)
and the new WN problem modeled as an MINLP proposed by them.
Huang, Chang, Ling, and Chang (1999) solved a refinery wastewater
network problem with equipment models, slightly more sophisti-
cated than the previous ones, as it considered water loss in the
equipment models.

After 2000, the works in this area were oriented to find the global
optimal solution of NLPs and MINLPs, created in the superstruc-
ture modeling (Bergamini, Aguirre, & Grossmann, 2005; Bergamini,
Grossmann, Scenna, & Aguirre, 2008; Castro, Teles, & Novais, 2008;
Chang & Li, 2005; Chang, Li, & Liou, 2009; Faria & Bagajewicz, 2011;
Gabriel & El-Halwagi, 2005; Hernandez, Castellanos, & Zamora,
2004; Karuppiah & Grossmann, 2006; Lee & Grossmann, 2003,
2001; Li & Chang, 2007; Meyer & Floudas, 2006; Teles, Castro, &
Novais, 2009; Ahmetović  and Grossmann, 2011).
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List of variables

y vector of dependent variables
bv binary variable
� polynomial model parameters
x independent variables
m number of independent variables
t number of terms in the polynomial model
n number of neurons in the second layer
LW weight matrix of third layer
IW weight matrix of the second layer
b2 bias vector of the second layer
b3 bias vector of third layer
Fw water flow rate
Tw water temperature
Afr cross section area
Fa air flow rate
Lfi fill height
Z contaminant concentration
Zin contaminant concentration of inlet stream
Zout contaminant concentration of outlet stream
NTU number of theoretical units
MRR  molar reflux ration
Tpress column top pressure
Fvap steam feed flow rate
H column height
V steam molar flow rate inside the column
L liquid molar flow rate inside the column
S stripper factor
dF effluent loss
dT difference between the inlet and outlet stream tem-

perature
TC heat exchanger
TAC total annualized cost

Subscript
SD stripper without reboiler
SR stripper with reboiler
NaCl salt
Oil organic compounds
H2S hydrogen sulfide
NH3 ammonia
in inlet
out outlet
B column bottom
T column top
st stripper cost
ref refrigeration cost
sep oil separator cost
pur purification cost
plant discharge to plant wastewater treatment unit cost
site discharge to site wastewater treatment unit cost
EI energy integration
SH steam heating
max  upper bound
min  lower bound

Superscript
fill fill type (splash, trickle or film)
ct column type (with or without reboiler)

Jeżowski (2010) produced the most recent review in this area,
with 264 notes on papers about energy and mass integration
for water consumption reduction. The author suggests that more

realistic models should be used to represent equipment in the
model superstructure (for example, including construction vari-
ables in equipment models) and that temperature should be
considered as a variable in the equipment modeling, for a more
realistic analysis of the system behavior.

These two  crucial points need to be considered in WN equip-
ment models. However, the use of phenomenological models in
an optimization platform such as GAMS would be unfeasible due
to high computational time and technical difficulties to program
thermodynamic modules with similar performance to the property
packages of commercial simulators.

High accuracy models that do not require large computational
time can be obtained by using different types of surrogate models,
which are able to approximate the equipment phenomenological
models. These models can be employed in the solution of the syn-
thesis problem in an optimization platform, leading to more precise
solutions. Despite their great versatility, there are some complex
problems that cannot be represented by surrogate models in a
straightforward way due to their inherent nonlinearity. We  here
show that surrogate models inspired by established shortcut mod-
els can be used, expanding the possibilities of process synthesis
based on superstructure optimization.

Surrogate models design and the methodology to build them is
presented in Section 2. In Section 3, we show a simple implemen-
tation of surrogate models to represent equipment for wastewater
network synthesis. In the fourth section, we  present an exam-
ple with more complex equipment, for which ordinary surrogate
model fit fails, and we  show a strategy to solve using a new
hybrid surrogate model based on established shortcut models. The
approach is applied to a complex case study of a wastewater net-
work synthesis. Finally, the results of this case study are extremely
interesting because they illustrate the non-convex nature of pro-
cess synthesis. A given number of local solutions are obtained that
are the same in essence, but depending on the accuracy of the
surrogate model approximation, they are obtained in a different
order.

2. Surrogate models

Surrogate models, meta-models or response surface models are
black box models that can approximate the behavior of complex
phenomenological models (within a limited range), using low com-
putational time. These models do not take into account the process
phenomenology, so that their equations are only a correlation of
the outlet variables with respect to the inlet variables.

Optimization based on surrogate models can be represented by
the following steps:

• A sample set is obtained by designing a set of experiments within
the operational range of the independent variables chosen.

• The phenomenological model is simulated using the sample set
as an input, providing outlet points set.

• The sample points set and the outlet points set are used to fit and
to validate the surrogate model.

• Finally, the surrogate model structure is optimized.

There are several types of surrogate models in the litera-
ture, such as: polynomial, Kriging interpolation, neural network
and splines. These models can be divided into two categories:
interpolating models, as the Kriging interpolation and splines,
in which the response surface comprises all the sample points;
and non-interpolating models, such as polynomial and neural
networks, which minimize the sum of the error between sample
points and the response surface (Müller & Piché, 2010). However, a
given type of surrogate model is not able to solve all the problems,
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