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a b s t r a c t

The transient free surface Green function (TFSGF) is of great importance in the prediction of unsteady
ship motions with forward speed. In this numerical approach, the wave part of the TFSGF and its spatial
derivatives are obtained by solving the fourth-order ordinary differential equations (ODEs) based on the
semi-analytical Precise Integration Method (PIM). Theoretical derivations show that in fact the
horizontal and vertical derivatives can be expressed by TFSGF, which means only one ODE needs to
be solved. The stability and accuracy of this method is demonstrated by the comparison with other
method as well as the analytical solutions. Additionally, the proposed method is applied to solve the
radiation problem of a floating hemisphere at zero speed using the time domain Rankine–Green method.
The numerical hydrodynamic coefficients show good agreement with the analytical solutions.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

The accurate predictions of wave induced motions and hydro-
dynamic loads are essential in ship design. Large motions or large
loads can cause damage to the ship . Therefore development of
theories to determine wave induced motions and wave loads has
attracted lots of researchers for many decades.

Considering the computational efficiency, the frequency
domain and time domain panel method based on potential theory
are widely adopted when the viscosity is ignored. Since the free
surface Green function itself satisfies the linear free surface
condition, it is usually taken as the integral kernel, and then only
the wetted body surface needs to be integrated.

Compared to the frequency domain consideration for forward
speed problem (Guevel and Bougis, 1982), the time domain
approach is found suitable, because the transient free surface
Green function (TFSGF) is relatively easy to compute (Datta et al.,
2011). Cummins (1962) first discussed the unsteady ship motions
in the time domain, and the idea is still current. To carry out the
time domain analysis, the three dimensional TFSGF given by
Wehausen and Laitone (1960) are widely used. Liapis (1986)
discussed the radiation problem of ships with forward speed in
the time domain by introducing the impulse response function,
and King (1987) added the corresponding wave exciting force in its
appropriate convolution form. Lin and Yue (1991) proposed the
numerical solutions for large-amplitude ship motions with

forward speed in the time domain. Via the close examination of
the asymptotics of the numerical solutions in the time domain,
Bingham (1994) presented that the linearized problem has a finite
solution at the critical frequency corresponding to Brard number
τ¼ 1=4. Besides, Bingham et al. (1994) and Korsmeyer and
Bingham (1998), among others, pursued variants of the same
method for different classes of 3D forward speed problems.

The key problem for the forward speed time domain simulation
is how to compute the wave part of the TFSGF and its derivatives,
accurately and efficiently in terms of integral form. Beck and Liapis
(1987) divided the computational domain into a number of
regions according to the oscillating properties of the integral part,
and using the analytical formula as well as the series expansions
on three different regions to solve the TFSGF and its derivatives.
King (1987) added an additional region where Bessel function
expansion was used. Based on the work of Newman (1985), Lin
and Yue (1991) developed an improved approach, where ascend-
ing series, asymptotic expansion or combination of them and 2-D
economized polynomial approximations were used. Huang (1992)
proposed a two parameter interpolation technique which was
adopted for the calculation of the TFSGF. The efficiency was
improved, but the accuracy reduced. Based on the double para-
meter variables in bounded domain, Clement (1998) uncovered
that the TFSGF is the solution of a fourth-order ordinary differ-
ential equation (ODE), the same conclusion was derived by Duan
and Dai (2001) and Liang et al. (2007). The fourth-order Runge–
Kutta method (RK44) was widely adopted to solve the ODEs, but it
will lead to stability problems after a long time simulation. Chuang
et al. (2007) proposed a semi-analytical method to solve the ODEs,
the accuracy and stability were improved, but the required terms
is more than forty when the source point and field point are both
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on the free surface. The computation of the TFSGF accurately and
efficiently is still a challenge.

The aim of this paper is to develop an accurate and efficient
method to evaluate the wave part of the TFSGF and its spatial
derivatives, by solving the fourth-order ODE. First, the three ODEs
which are used to compute the wave part of TFSGF and its spatial
derivatives are reduced to one through theoretical derivation.
Then, by modifying the form of the ODE related to TFSGF and its
temporal derivatives, the non-homogeneous and stationary sys-
tem is obtained, which will be solved by the Precise Integration
Method (PIM) (Wan-Xie, 2004). In addition, the accuracy and
efficiency of the proposed method is verified by comparison with
the analytical solutions as well as other method, e.g., RK44. Finally,
to further verify the accuracy of the proposed method, it was used
to solve the radiation problem of the hemisphere at zero speed,
and the numerical solutions of the added mass and damping
coefficients show good agreement with the analytical solutions
(Hulme, 1982).

2. Mathematical formulation

The linearized assumptions of the free-surface flow problems
are made: the fluid is inviscid and incompressible, the flow is
irrotational, the pressure is constant over the free surface, and the
surface tension is neglected. Then the time domain wave-body
interaction problems can be solved by the boundary element
method (Hess, 1964), using the TFSGF as the Green function.

Denoting a field point p x; y; z; tð Þ and a source point q ξ;η; ζ; t0
� �

,
then the 3D infinite water depth TFSGF given by Wehausen and
Laitone (1960) can be written as

G p; q; t�t0ð Þ ¼ δ t�t0ð Þ � G0þH t�t0ð Þ � ~G ð1Þ
with
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where δ is the Dirac impulse function, H is the Heaviside step
function, and J0 is the first kind Bessel function of zeroth order.

G0 is referred as the instantaneous part of the TFSGF, while ~G is
called the wave part. The instantaneous part is easy to evaluate by
adopting the Hess Smith method (Hess, 1964). Due to the oscillat-
ing properties of the wave part, ~G is hard to compute. Therefore
the main focus of this paper is on the precise computation of the
wave part. Clement (1998) proved that the wave part of the TFSGF
is the solution of a fourth-order ODE, which will be solved by the
Precise Integration Method in this paper. For computation require-
ment, Eq. (3) is transformed into a non-dimensional form
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by introducing
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Through non-dimensional transformation, the wave part of the
TFSGF can be expressed as a function of two real variables μ and τ:
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By a similar method, the horizontal derivative ~GR can be
written in the non-dimensional form, too.
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Then the horizontal derivatives of the TFSGF, ∂ ~G=∂x and ∂ ~G=∂y
can be obtained from
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The vertical derivative of the TFSGF can also be written in the
non-dimensional form:
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and the vertical derivative of the TFSGF can be computed from
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Clement (1998) proved that the form of double parameter
function Av;l μ;β

� �
, defined as
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is the solution of the following fourth-order differential equa-

tion
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So the TFSGF and its derivatives can be obtained by solving the
three fourth-order ODEs.

From Eq. (7) and Eq. (17), it can be seen that the vertical
derivative of the TFSGF can be expressed as a function of
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