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a b s t r a c t

Incremental–iterative methods are widely used for tracing the equilibrium paths of structures. To
determine the nonlinear structural response, an iteration process is required. In this paper, some residual
areas are employed for the base of iteration steps. By setting each area to zero, and minimizing its
perimeter separately, some new constraint equations can be achieved. After developing the related
formulations, several geometric nonlinear analyses of frames, shell and trusses are performed to
evaluate the robustness of the suggested methods. Findings prove the high capability of the authors'
first scheme compared to other new proposed methods and cylindrical arc-length technique. Addition-
ally, the capacity of each strategy in passing the limit points is assessed.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

It is well-known that some structures change their initial
shapes significantly before reaching their ultimate strengths. In
the case of large displacements, the geometric nonlinear analysis
is required for assessing accurately the structural behavior. Up to
now, various methods have been proposed to reach the nonlinear
structural responses. The Newton–Raphson algorithm is a well-
known load control approach, which however cannot trace load–
displacement curves after a snap-through point (Bergan and
Soreide, 1978). To overcome this difficulty, the displacement
control tactic was presented by Argyris (1965). It is proved that
for structures with displacement limit points, the aforesaid tech-
nique converges to wrong responses (Crisfield, 1981). Wempner
(1971) and Riks (1972) suggested a more robust scheme named
arc-length method. The load increment is constant in each step of
the load control approach. On the other hand, the displacement
increment remains invariable in the displacement control strategy.
Conversely, both the load and displacement increment are
updated in each iteration of the arc-length approach. By adding
a new unknown parameter to this solution procedure, an extra
constraint equation is required.

So far, Investigators have suggested different constraint rela-
tionships for various nonlinear equation solvers. In the normal
plane method, the locus of the iterative analyses' points is
perpendicular to the tangent which passes through the first step
equilibrium point (Riks, 1979). Based on the assumptions of Forde
and Stiemer (1987), the vectors passing through the previous
equilibrium points and the iteration surface points are

perpendicular to the location of the iterative points in the updated
normal plane approach. One of the prominent ways, which has
been frequently utilized for nonlinear analysis of structures, is
named cylindrical arc-length method. Crisfield (1981) reformu-
lated Riks' updated tactic by ignoring the force component against
the displacement components in the constraint equation. In
another well-known strategy, which is called work control
method, Yang and McGuire (1985), and Chen and Blandford
(1993) assumed that the work increment is constant at the
beginning of each incremental step, and is equal to zero in the
iterative steps. It is worth emphasizing that one of the important
procedures used for tracing the equilibrium path is the generalized
displacement control technique. Yang and Shieh (1990), and
Richard Liew et al. (1997) showed that this scheme can pass both
loads, and displacements limit points.

Other tools have also been used to find the nonlinear response
of structures. For instance, the normal flow scheme is based on the
iterative analysis performed on the lines normal to Davidenko's
flow (Allgower and Georg, 1979). Toklu (2004), and Toklu et al.
(2013) optimized total potential energy by using various algo-
rithms. Ritto-Corrêa and Camotim (2008) reviewed the arc-length
method and other quadratic control techniques. In a different way,
Rezaiee-Pajand and Alamatian (2008), and Rezaiee-Pajand and
Sarafrazi (2011) conducted the nonlinear analysis with the help of
the dynamic relaxation method. In this approach, the structural
static equations are converted to the dynamic equations. Besides,
Saffari and Mansouri (2011) and (2012) took advantage of the
analytical method to study the nonlinear behavior of structures. It
was found that this scheme's order of convergence is four.
Recently, Saffari et al. (2013b) combined the Newton–Raphson
technique with three other methods, and investigated the geo-
metric and material nonlinear behavior of space trusses.
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Two types of nonlinear structural behavior are studied by inves-
tigators, which are called material or geometric nonlinearities. In
material nonlinearity, the constitutive relation describing the material
is nonlinear, and the behavior is affected by physical phenomena such
as plasticity. This physical phenomenon requires the satisfaction of
yield function in any step of the analysis. Furthermore, the residual
loads, which result from material constitutive relation, should be
considered in each load step. In geometric nonlinear problems,
nonlinearity is due to changes of structural shape, arising from large
strains and/or rotations. This behavior affects strain–displacement
relationship, and leads to residual loads in any step of analysis. Most
of the nonlinear solvers consider the residual values of quantities,
such as load, displacement, work, etc., and try to make them vanish in
any of the load steps.

Since constraint conditions play a very important role in any
nonlinear solvers, this paper is devoted to present three new
constraint equations for geometric nonlinear analysis of structures.
These novel formulas are obtained by using the residual areas in
the iteration process. To reach good convergence criteria, authors
will take advantage of the properties of some geometrical shapes.
In addition to present the related formulations, the capabilities of
the proposed approaches in passing the limit points are evaluated
and obtained results are compared with the cylindrical arc-length
method.

2. Solving nonlinear equations

Under quite general assumptions, the nonlinear static equili-
brium equations of a structure can be put in the following form:

RðD; λÞ ¼ λP�FðDÞ ð1Þ
In this relation, the displacement vector, load factor and external
force vector are denoted by D, λ and P, respectively. Also, the
internal force and the unbalance load vector are shown by FðDÞ
and RðD; λÞ, correspondingly. The general scheme of incremental-
iterative methods is shown in Fig. 1. It is assumed that the (n�1)th
static equilibrium point ðΔDn�1; λn�1PÞ is known, and the analysis
process is carried out in the (n)th step. The first approximation of
the incremental stepðΔD1

n;Δλ1
nPÞ, called the predictor step, is

obtained by solving the following equation set:

Kn�1Δun
1 ¼Δλn1 P ð2Þ

where Kn�1is the tangential stiffness matrix at the (n�1)th
equilibrium point. By deploying this equality, the state of the first
point in the (n)th step is calculated. To reach to the (n)th point of
the static equilibrium path, sequential iterations are required. In

each iteration, the load factor is obtained by using a suitable
constraint equation, which defines a surface in the load–displace-
ment space. The correction to the displacement increment in the
(i)th iteration is defined as the residual displacement,
δDi

n ¼ΔDn
iþ1�ΔDn

i . Batoz and Dhatt (1979) expressed the residual
displacement in the form of a linear combination

δDn
i ¼ δD″ni þδλni δD

0
in ð3Þ

where δD″ni and δD0
inare the displacement induced by residual

force and the external load, respectively. The succeeding relation-
ships are correspondingly utilized to calculate these displace-
ments.

Kn
i δD″

n
i ¼ Rn

i ð4Þ

Kn
i δD

0
in¼ P ð5Þ

The residual force in the (i)th iteration can be obtained by using
Eq. (1). It is clear that the residual force, and the external load are
known at the beginning of each iteration. Hence, only δλni is
required to compute δDn

i . Recall that δλ
n
i can be obtained by using

the constraint equation. Thus, the incremental load and displace-
ment are obtained as:

Δλniþ1 ¼Δλni þδλni ð6Þ

ΔDn
iþ1 ¼ΔDn

i þδDn
i ð7Þ

It is worth emphasizing that the constraint equation has to be
applied to find the load factor in each step. Due to this fact, the
differences of the various incremental–iterative methods are

Nomenclature

D Displacement
λ Load factor
F internal force vector
R unbalance load vector
P External load
Kn�1 Tangential stiffness matrix in step (n�1)
ΔDn

1 Displacement increment in first iteration of step n
Δλn1 Load factor increment in first iteration of step n
δDn

i Displacement increment in iteration i of step n
δD″ni Displacement increment caused by unbalance load in

iteration i of step n
δD0

in Displacement increment caused by external load in
iteration i of step n

δλni Load factor increment in first iteration of step n
An
i residual area

sn vector passing through point placing on equilibrium
path and iteration point

nn
i locus of the iterative points

rni�1 Reduced residual load in iteration (i�1) of step n
Pn
i residual perimeter

Ln Arc length
JD Selected number of iteration
Jn�1 Number of iterations in step (n�1)
A cross-sectional area
E elasticity modulus
I moment of inertia

Fig. 1. The general scheme of incremental-iterative methods.
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