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a  b  s  t  r  a  c  t

In this  paper,  an  improved  adaptive  predictive  control  with  robust  filter  is developed  to  be applied  in an
artificial  pancreas.  Several  problems  inherent  to endocrine  systems  for diabetic  persons  have  to be  tackled
such  as  nonlinearities,  long  time  delays  or daily variations  of  parameters.  Three  Finite  Impulse  Response
models  for  insulin  input  and  the  same  for meal  intake  (perturbations)  corresponding  to  normal,  hyper-
hypoglycaemia  levels  to implement  three  zones  control  are  taken  into  account.  The  glycaemia  reference
trajectory  is  shaped  from  a healthy  person  response.  A  variable  weighting  factor  in the  cost  function  is
included  to  prevent  dangerous  glycaemia  excursions  out  of  the  allowed  limits.  Additionally,  a  noisy  blood
glucose subcutaneous  sensor  model  is  used.  This  control  strategy  is tested  on  30  virtual  subjects  from
the  UVa  – Padova  Simulator.  Simultaneous  meals  and  physiological  disturbances  are  taken  into  account
and  the  main  conclusions  are  drawn  from  Control  Variability  Grid  Analysis.

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

In type I diabetes Mellitus, the body’s immune system attacks
and destroys beta cells of the pancreas. These cells produce insulin,
a hormone that regulates the blood glucose concentration in the
body. Whereas insulin lowers the glucose content of the blood
(when hyperglycaemia occurs), glucagon (other hormone) frees the
glucose in the liver when plasma glucose concentration reaches a
hazardous low value (a hypoglycaemic episode can lead a subject
to death). The importance of giving an alternative solution through
the artificial pancreas seems to be relevant since the prevalence
of diabetes for all age-groups worldwide was estimated to be 9.9%
in 2030 by the International Diabetes Federation. (2011). The total
number of people with diabetes is projected to rise from 366 million
in 2011 to 552 million in 2030.

An artificial pancreas is a device that nowadays is being widely
studied by scientists worldwide because there are great econom-
ical interests in its completion (O’Grady, John, & Winn, 2011).
It is composed of a blood glucose sensor, an automatic control
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algorithm and an insulin pump (Fig. 1). There are several
approaches in the application of each of these three elements.
For example, glucose sensing could be non-invasive (Campetelli,
Zumoffen, & Basualdo, 2011) or minimally invasive and the route
for insulin infusion or glucose measure could be either intravenous
or subcutaneous. From the control point of view, PID (proportional
integral derivative) (Ramprasad, Rangaiah, & Lakshminarayanan,
2004) and MPC  (model predictive control) (Campetelli, Zumoffen,
Basualdo, & Rigalli, 2010; Hovorka et al., 2004) control laws are
among the most well-known methodologies proposed in the litera-
ture. However, model-based control strategies have been used with
more encouraging outcomes in tighter regulation of blood glucose
levels. The knowledge incorporated by the models in these types
of controllers is what makes them more appealing.

It is well known that glucose homeostasis of diabetic subjects
is affected by many factors. For example, insulin sensitivity can
be acutely modified by independent variables such as physical
exercise, dietary factors, alcohol intake or harmless drugs. Even
psychological conditions like stress can produce daily variations on
the glucose regulation capacity of a type I diabetic subject. In this
context, model based control algorithms using models with con-
stant coefficients could be inaccurate. Daily variations of the system
take away the credibility of model predictions. Up to now, very few
researchers addressed this issue. The most remarkable work on this
subject is that of Hovorka et al. (2004). They applied a nonlinear
model predictive controller that uses a Bayesian parameter estima-
tion to determine time-varying model parameters. El-Khatib, Jiang,
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Fig. 1. Artificial pancreas:  here the work is done in silico. By means of computer
simulation a virtual subject, a simulated sensor and insulin pump are commanded
by  the controller proposed herein so that its performance could be safely tested.

and Damiano (2007) used a Generalized Predictive Control (GPC)
algorithm with an ARMAX internal model of the system which is
recursively adapted online and in the case of Eren-Oruklu, Cinar,
Quinn, and Smith (2009), ARIMAX models were used.

Hence, the main contribution of this work is the use of online
adaptation of the model parameters. However, due to the nonlinear
nature of the daily dynamic variations suffered by the diabetic sub-
ject, the use of three internal nominal models is proposed. Three
Finite Impulse Response (FIR) models for predictions are used.
They are switched according to the subject’s glycaemia levels as
starting point for doing the adaptation. Good results using FIR mod-
els for diabetic subjects were reported by Ståhl, Johansson, and
Renard (2010). These models are implemented in the context of the
Adaptive Predictive Control with Robust Filter (APCWRF) approach
(Zumoffen & Basualdo, 2012). The novelty is the use of the infor-
mation given by three FIR models of the perturbation depending on
the level of glucose content in blood as meal announcement. The
reference trajectory adopted is based on the dynamic response of
a healthy person model with the same meal intake. Additionally,
a variable weighting factor is included in the control algorithm to
prevent the glycaemia excursions outside the healthy range. This
set of improvements allowed us to consider several typical issues
for diabetes care, leading to better predictions of the internal mod-
els and driving to more accuracy in the insulin dosage calculations.
Several experiments are performed with data from 30 subjects and
the obtained results are rigorously compared through Control Vari-
ability Grid Analysis (CVGA) (Magni et al., 2008).

2. The simulation platform

The mathematical model used in this work to synthesize and test
the controller is the one developed by (Dalla Man, Rizza, & Cobelli,
2007; Kovatchev, Breton, Cobelli, & Dalla Man, 2008) (UVa/Padova
Simulator). It considers the human endocrine system of normal,
prediabetic, type II and I diabetic subjects. Because it is one of the
only ones that has been validated against clinical and experimen-
tal data, the type I diabetic subject version has been approved by
the Food and Drugs Administration (FDA) as a substitute to animal
trials in the pre-clinical testing of closed-loop control algorithms
Kovatchev, Breton, Dalla Man, and Cobelli (2009). This model allows
simulating the dynamic effect of exogenous glucose and insulin
dosage under different specific tests and it is summarized in the
following subsections.

2.1. Glucose intestinal absorption

It is modeled by a recently developed three-compartment
model:

˙Qsto1(t) = −kgriQsto1(t) + d(t) (1)

˙Qsto2(t) = −kempt(t, Qsto(t))Qsto2(t) . . . + kgriQsto1(t) (2)

˙Qgut(t) = −kabs + kempt(t, Qsto(t))Qsto2(t) (3)

Qsto(t) = Qsto1(t) + Qsto2(t) (4)

Ra(t) = fkabsQgut(t)/BW (5)

where Qsto (mg) is the amount of glucose in the stomach (solid,
Qsto1, and liquid phase, Qsto2), Qgut (mg) is the glucose mass in the
intestine, kgri is the rate of grinding, kabs is the rate constant of
intestinal absorption, f is the fraction of intestinal absorption which
actually appears in plasma, d(t) (mg/min) is the amount of ingested
glucose, BW (kg) is the body weight, Ra (mg/kg/min) is the glucose
rate of appearance in plasma and kempt is the rate constant of gastric
emptying which is a time-varying nonlinear function of Qsto:

kempt(t, Qsto(t)) = kmax + kmax − kmin
2

[A(t)]; (6)

where

A(t) = tanh[˛(Qsto(t) − bD(t))] . . . − tanh[ˇ(Qsto(t) − dD(t))] (7)

 ̨ = 5
2D(t)(1 − b)

(8)

ˇ = 5
2D(t)d

(9)

D(t) =
∫ tf

ti

.(t) dt (10)

where  ̨ and  ̌ are rate constants of gastric emptying, ti and tf,
respectively, start time and end time of the last meal, b, d, kmax and
kmin model parameters.

2.2. Glucose subsystem

A two-compartment model is used to describe glucose kinetics:

Ġp(t) = EGP(t) + Ra(t) − Uii(t) . . . − E(t) − k1Gp(t) + k2Gt(t); (11)

Ġt(t) = k1Gp(t) − Uid(t) − k2Gt(t) (12)

G(t) = Gp(t)
VG

(13)

with Gp(0) = Gpb, Gt(0) = Gtb, G(0) = Gb. Here Gp and Gt (mg/kg) are
glucose masses in plasma and rapidly-equilibrating tissues, and in
slowly-equilibrating tissues, respectively, G (mg/dl) is plasma glu-
cose concentration, suffix b denotes basal state. EGP is endogenous
glucose production, Ra is glucose rate of appearance in plasma, E is
renal excretion, Uii and Uid are insulin-independent and dependent
glucose utilizations, respectively (mg/kg/min), VG is the distribu-
tion volume of glucose (dl/kg), and k1 and k2 (min−1) are rate
parameters.

2.3. Glucose renal excretion

Renal excretion represents the glucose flow which is eliminated
by the kidney, when glycaemia exceeds a certain threshold ke2:

E(t) = max(0,  ke1(Gp(t) − ke2)); (14)

The parameter ke1 (1/min) represents renal glomerular filtration
rate.
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