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a  b  s  t  r  a  c  t

Since  their  inception  in the early  1980s  industrial  model  predictive  controllers  (MPC)  rely  on  continuous
quadratic  programming  (QP)  formulations  to derive  their optimal  solutions.  More  recent  advances  in
mixed-integer  programming  (MIP)  algorithms  show  that  MIP  formulations  have  the  potential  of being
advantageously  applied  to  the  MPC  problem.  In this  paper,  we  present  an MIP  formulation  that  can
overcome  difficulties  faced  in  the  practical  implementation  of  MPCs.  In  particular,  it  is possible  to set
explicit  priorities  for inputs  and  outputs,  define  minimum  moves  to overcome  hysteresis,  and  deal  with
digital  or  integer  inputs.  The  proposed  formulation  is  applied  to simulated  process  systems  and  the  results
compared  with  those  achieved  by a traditional  continuous  MPC.  The  solutions  of  the resulting  mixed-
integer  quadratic  programming  (MIQP)  problems  are  derived  by a computer  implementation  of  the  Outer
Approximation  method  (OA)  also  developed  as part  of  this  work.

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Most industrial model predictive controllers currently in use
are based on the algorithms developed in the early 1980s (Qin &
Badgwell, 2003). These algorithms have two main functions, i.e.,
to reduce the process variability through better dynamic control
and to move the operating point closer to the constraints, which
in general results in significant economic benefits. In order to per-
form these functions, the usual practice is to adopt a hierarchical
structure with two layers where the upper layer deals with the
steady-state problem of defining optimal targets for inputs and out-
puts, while the lower layer, responsible for the dynamic problem,
calculates the control moves that drive the system toward these
steady-state targets.

The upper layer solves an optimization problem aiming at min-
imizing a linear combination of the projected steady-state values
of the inputs, while simultaneously minimizing the square of the
moves to be imposed on these inputs. Linear relations among
inputs and outputs, and constraints limiting the allowable range
of both kinds of variables are also imposed. As a result of these con-
straints the problem may  be infeasible, and this fact demands the
implementation of a relaxation strategy in order to guarantee that
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some kind of solution is always found. The lower layer involves an
optimization problem that is always feasible because it includes
constraints only on the manipulated inputs.

We propose to replace both optimization problems by mixed-
integer (MIP) formulations, thus building a hybrid MPC. Several
advantages may  result from such an approach; for instance, the
possibility of assigning explicit priorities for the outputs, i.e., the
definition of a preferential order of constraint relaxation in case
the initial steady-state problem proves infeasible. The inputs can
also receive explicit priorities to select the order in which they are
to be moved to adjust each output. The formulation also makes
it possible to set a minimum limit for the control moves, i.e., any
movement must be greater than a limit that is defined large enough
to overcome the hysteresis of valves significantly affected by this
problem.

The MIP  formulation also allows the controller to deal with
discrete inputs, either manipulated variables or disturbances, i.e.,
variables that can assume only a set of discrete values like for
instance, 0 or 1 (on or off).

Hybrid formulations for MPC  have been developed and success-
fully used in industrial applications as described for instance by
Bemporad and Morari (1999), Morari and Barić (2006), Zabiri and
Samyudia (2006), and Oldenburg and Marquardt (2008). Never-
theless, most of these contributions address the control of hybrid
systems, while the present work focus on the development of a
mixed-integer algorithm based on the traditional MPC  that can be
advantageously applied to continuous systems. Such a capability
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has so far received little attention from the academic community,
probably due to the inevitable increase in computational complex-
ity in relation to the continuous formulations.

One instance of such a possible advantage can be identified in
systems where two or more inputs present similar influence on the
outputs. Due to the intrinsic multivariable characteristic of the pro-
cess and the controller, the inputs will be moved at the same time.
But frequently a better approach would be to use one of them for
smaller moves and the other for larger ones. This is the case when
valves of different dimensions are set in parallel lines with pre-
cisely the intention of allowing better manipulation of the inputs.
The larger valve should only be used for larger flowrate changes,
since smaller ones may  not be actually implemented due to valve
hysteresis.

Another characteristic, also related to the multivariable nature
of the controller, is the manipulation of independent variables that
have only a small influence on an output, especially when this last
variable hits a constraint. This is the case, for example, of the feed
flowrate, an input that affects almost every output in the plant. The
controller, as a rule, aims at maximizing the feed but this may  be
prevented by almost any output hitting a constraint. To cope with
this situation, a frequent practice is the outright elimination of the
response model relating the feed and several less-important out-
puts. The undesired side-effect of this practice is that the controller
will be unable to move the feedrate when this is the only solution
to avoid constraint violation on such outputs, thus compromising
the overall performance.

The relaxation algorithm used in the steady-state target calcu-
lation represents another opportunity for improvement. The usual
algorithm basically dualizes some constraints, i.e., it transfers them
to the objective function as terms minimizing the violation of the
original constraints. This relaxation strategy frequently results in
violations of the limits of variables that are currently within these
limits, which is an undesirable change in the controller behavior.
This happens because there is no straightforward way to determine
which and how many limits should be relaxed. Additionally, when
violations are unavoidable, some inputs are no longer minimized
(or maximized) without any obvious reason for the plant operators.

Hence the algorithm proposed in this paper includes binary vari-
ables to represent the decisions to move the manipulated inputs
during the control horizon, and these decisions can be penalized
in the objective function or subjected to a priority sequence. This
ensures that the available spans of the less important inputs are
exhausted before the algorithm moves the more important ones.
Binary variables are also included to represent the decisions to
allow violations of the upper or lower limits of the controlled out-
puts. In an analogous way, these decisions can be penalized or
prioritized, meaning that a specific sequence of permissions to vio-
late the limits can be defined.

The inclusion of these binary decisions provides the control
engineer additional freedom to define the expected behavior of the
algorithm, but on the other hand this behavior can be negatively
affected by an inadequate definition of priorities or weights, and it
is important to state that this paper does not attempt to address the
stability and robustness properties in any other way  than through
examples, and we recognize that this is an important issue that
deserves future theoretical work. Additionally, this paper does not
analyze the application of the proposed algorithm to nonlinear or
hybrid systems, and this may  also constitute a worthy subject for
future investigation.

It is interesting to add that including the cited binary variables
eases a future integration of the two layers that constitute the
traditional linear controllers, since the main reason for keeping
them as separate formulations is the fact that the original prob-
lem solved by the upper layer may  be infeasible, and this is not the
case in the proposed algorithm. The integration will probably result

in a formulation whose theoretical properties can be more easily
analyzed.

The outline of the paper is as follows. In Section 2, the usual
continuous MPC  formulation, comprising the static and dynamic
layers, is presented. Section 3 describes the proposed mixed-
integer formulation for the static layer, responsible for deriving
the steady-state targets for inputs and outputs. Section 4 deals
with the formulation of the mixed-integer dynamic layer, which
calculates the control actions. The mixed-integer quadratic pro-
gramming solver developed to derive the solutions of both layers
is described in Section 5. Section 6 covers the application of the
proposed formulation on the 4-tank benchmark system, including
a comparison of the results with the ones obtained with the tra-
ditional controller. Section 7 also deals with the application on a
benchmark system, the Shell control problem. In Section 8, the pro-
posed formulation is applied on a simulated industrial system and
a comparison with the continuous controller is provided. Finally,
Section 9 concludes this paper by briefly summarizing the results.

2. Continuous MPC  formulation

According to Sotomayor, Odloak, and Moro (2009), the MPC
target calculation layer, also called steady-state linear optimizer,
solves at each sampling instant a QP problem where the objective
is to force one or more inputs to their bounds, while keeping the
outputs inside the bounds. This problem may  be defined as follows:

min
�ũ,ıy

ϕss = 1
2

· �ũT W0 �ũ + WT
1 �ũ +  ıyT

W2ıy (1)

subject to

�ũ = ũ −  u

ỹ = G0 �ũ + ŷk+n|k

uLB ≤ ũ ≤ uUB

yLB ≤ ỹ +  ıy ≤ yUB

(2)

where u is the vector of the current values of the inputs (imple-
mented at time k − 1); ũ,  vector of steady-state targets of the inputs;
ỹ, vector of steady-state targets of the outputs; ıy, vector of slack
variables for the controlled outputs; G0, steady-state gain matrix
of the process; k, the present time step; n, settling time of the pro-
cess in open loop; W0, W1, W2, weight matrices; uLB, uUB, vector of
bounds of the manipulated inputs; yLB, vector of lower operation
limits for the outputs; and yUB, vector of upper operation limits for
the outputs.

In the equations above, ŷk+n|k represents the contributions of the
past inputs to the predicted output at time step k + n, i.e., at the end
of the time horizon and is obtained from the MPC  dynamic layer as
the predicted output value at the end of the time horizon, i.e., after
system stabilization.

The solution of the problem defined by Eqs. (1) and (2) generates
the input targets that are transferred to the MPC  dynamic layer. The
version of MPC  we consider in this work is a modification of the
quadratic dynamic matrix control (QDMC) as described in García
and Morshedi (1986) and Soliman, Swartz, and Baker (2008). This
version solves the following optimization problem:

min
�Ūk

ϕqdmc = (Ȳk − Ỹ)
T
Q (Ȳk − Ỹ) + �ŪT

k � �Ūk (3)

subject to:

−�uUB ≤ �ūk+�−1 ≤ �uUB

uLB ≤ ūk+�−1 ≤ uUB

Ȳk = A�Ūk + Ŷk

∀� = 1, . . . , m

∀� = 1, . . . , m
(4)
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