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a b s t r a c t

This paper analyzes the performance of three types of statistical models and a well-known physics-
based model for forecasting the wave energy flux. The forecasts are run over horizons of 1–24 h at five
buoys located in the Bay of Biscay. The data resolution is hourly. The 1999–2005 timeframe is used to
train the models. The forecasts are run and evaluated over the six-year period from 2006 to 2012. The
statistical forecasting models use three techniques: analogues, random forests (a machine learning
algorithm) and a combination of the two. The physics model is the Wave Model (WAM). The forecasts are
compared at a 95% confidence level with the simplest prediction – Persistence – and also with the
nearest grid point of the WAM forecasts. Over horizons between 3 and 16–19 h at locations near the
coast (where wave farms may be installed), the random forests models outperform the others, including
WAM and Persistence. These models exploit the inherent predictability associated with the strong
autocorrelation present in ocean energy values. The additional prognostic capabilities that random
forests models provide over Persistence, are due to their ability to sucessfully incorporate the
information that both, atmospheric and sea-state variables provide.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

The last decade has seen increasing interest in ocean wave energy
as a renewable power source. In 2008, the first generation of
commercial ocean energy devices came into operation. One key issue
in grid integration is forecasting, particularly over short horizons, on
the order of a few hours. Wave energy is usually expressed in terms of
the flux, a function of the significant wave height and the period, and
is denominated in kW per metre of crest length (kW/m).

As with other types of renewable energy, wave energy can be
difficult to forecast, mainly because of its intermittency (Esteban et al.,
2010; Esteban and Leary, 2012). In particular, because the wave height
(Hs) and period (Tm) combine multiplicatively in the flux, the forecast
errors for the flux can be expected to be higher than for Hs and Tm
individually (Pinson et al., 2012). An in-depth review of the current
state of the art regarding the short-term prediction of the wave energy
flux can be found in the Nitsure et al. (2012), and references therein.

There have been two main approaches to wave forecasting.
Large-scale physics-based models are operated by the European
Centre for Medium-Range Weather Forecasts (ECMWF), and the
National Oceanographic and Atmospheric Administration in the
United States. These models are the WAM and WAVEWATCH III
respectively (The Wamdi group, 1988; Jansen, 2007; Bidlot et al.,
2007; Richardson et al., 2009 and references therein). A smaller
physics model, SWAN (Simulating Waves Near Shore), which is
adapted for shallow water, was developed in Booij et al. (1999).
These models forecast the wave height and period, as well as other
parameters such as the wave direction. The energy can easily be
calculated from these outputs.

The second branch of the literature has used time series models.
These include regressions, neural networks and genetic programming
(Deo and Naidu, 1999; Deo et al., 2001; Agrawal and Deo, 2002;
Kamranzad et al., 2011; Surabhi and Deo, 2008; Nitsure et al., 2012;
Rao et al., 2013; Hadadpour et al., 2014). Other techniques like Support
Vector Machines and M5 model trees, have also been used (Etemad-
Shahidi and Mahjoobi, 2009; Javad and Ehsan, 2009). It is worth
mentioning that a pre-processing step of dimensionality reduction is
often taken. Instead of the original variables, scores from the leading
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Empirical Orthogonal Functions (EOFs) are used to feed the models
(Rao et al., 2013).

Studies have found that statistical methods forecast more
accurately at short horizons, while physics-based models predict
more accurately at longer horizons, of about 6 h and beyond.
Combining both techniques may forecast better than either one
individually (Reikard et al., 2011; Reikard and Rogers, 2011; Pinson
et al., 2012). Further, the errors from statistical and physics models
evolve differently as the prediction horizon increases. In the case
of statistical models, the error increases rapidly over the first few
hours. In the physics models, the error increases gradually over a
period of days.

The objectives of this research were as follows:

1. Use statistical algorithms and only the data available at time t
to obtain hourly forecasts of flux levels for time tþk (k¼1,
…,24) at five locations (buoys) in the Bay of Biscay. The
following statistical techniques have been used (i) analogues,
(ii) random forests and (iii) a combination of both. The models
are fed with both buoy data and ECMWF ocean and atmosphere
information, after a previous stage of dimensionality reduction
using extended EOF.

2. Evaluate the models' performance according to the standard
indicators as customarily used in the literature. The results
yielded for each buoy by the different statistical techniques will
be compared among them and also with two additional
references: (i) the forecasts yielded by the physics-based
WAM model at the nearest gridpoint from the buoy and
(ii) the persistence of flux values. As a result, a ranking of
performances will be obtained for each buoy and forecasting
horizon.

In the following section, the data used and the methodology
followed will be explained in detail. Results and conclusions will
be presented in the final sections.

2. Data and methodology

2.1. Data

This study has been carried out on the Bay of Biscay (Fig. 1). The
average values of the wave energy flux obtained from the WAM
analysis in the 1999–2012 period range from 15 to 50 kW/m with
values increasing from east to west (Fig. 2). These values are
similar to those reported in the literature (Iglesias et al., 2009;
Iglesias and Carballo, 2010a, 2010b, 2010c; Castro et al., 2014;
Gonçalves et al., 2014).

The data are derived from two sources corresponding to the
1999–2012 period:

1) Buoy records
1.1. Hourly directional wave data from three directional,

near-shore buoys (Tables 1 and 2, Fig. 3) operated by the
Spanish Port Authority http://www.puertos.es/oceanogra
fia_y_meteorologia/redes_de_medida/index.html

1.2. Hourly non-directional or scalar wave data from two open-
sea buoys (Tables 1 and 2, Fig. 3) operated by the UK
MetOffice http://www.metoffice.gov.uk/weather/marine/
observations/.

2) Retrospective simulations of the ECMWF atmospheric and
wave models as follows:
2.1 ECMWF (www.ecmwf.int) ERA-Interim atmospheric reana-

lysis (Dee et al., 2011) data in analysis mode. The selected
variables have been mean sea level pressure (MSL), zonal
(U10) and meridional (V10) components of the surface
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Fig. 1. Area of study.

Fig. 2. Module of the wave energy flux [kW/m] in the Bay of Biscay.

Table 1
Number of cases used in this study for training and testing and average wave
energy flux values (kW/m).

Buoy
#

Name 1999–2005 #Cases for
training

2006–2012 #Cases for
testing

Flux
(kW/m)

1 Villarino
Sisargas

7093 8894 24.1

2 Estaca de
Bares

7030 6957 22

3 Cabo Peñas 7029 8802 15.5
4 Gascogne 9601 8555 30.7
5 Brittany 8904 8790 40.50
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