
Computers and Chemical Engineering 55 (2013) 50– 60

Contents lists available at SciVerse ScienceDirect

Computers  and  Chemical  Engineering

jo u r n al homep age : www.els evier .com/ locate /compchemeng

A  new  moment  analysis  method  to  estimate  the  characteristic
parameters  in  chromatographic  general  rate  model

Zheng  Liua,∗,  Jonas  Roininenb, Iiro  Pulkkinena, Pia  Saari a, Tuomo  Sainioc, Ville  Alopaeusa

a Aalto University, School of Chemical Technology, Department of Biotechnology and Chemical Technology, P.O.B. 16100, FI-00076 Aalto, Espoo, Finland
b Neste Jacobs Oy, P.O.B. 310, FI-06101 Porvoo, Finland
c Lappeenranta University of Technology, Laboratory of Industrial Chemistry, Skinnarilankatu 34, FI-53850 Lappeenranta, Finland

a  r  t  i  c  l  e  i  n  f  o

Article history:
Received 4 January 2013
Received in revised form 31 March 2013
Accepted 4 April 2013
Available online 17 April 2013

Keywords:
Moment analysis
Parameter optimization
Chromatographic general rate model
Numerical solutions

a  b  s  t  r  a  c  t

In conventional  moment  analysis,  detailed  information  regarding  the  retention  equilibrium  and  mass
transfer  kinetics  is  derived  from  the  1st normalized  moment  and  standard  deviation  of the  chro-
matograms  respectively.  The  moment  values  are  determined  from  their  analytical  expressions.  In  the
moment  analysis  method  of  this  work,  the moment  values  are  estimated  accurately  from  the  simulated
chromatograms  by the application  of the  weighed  residual  moment  method.  For  parameters  estimation,
our moment  analysis  method  can be  implemented  not  only  on  the  symmetric  chromatograms  with  linear
isotherms  as in  conventional  moment  analysis,  but also  to the  analysis  of  asymmetric  chromatograms
with  nonlinear  and  competitive  isotherms.  Also  compared  to the  commonly  used  parameter  estima-
tion  method  (fitting  with  experimental  concentration  points),  our  moment  analysis  method  approached
faster  to  the  optimized  values  and  the  final  parameters  were  also  better  identified.

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Over decades, mathematical modeling has been applied to study
phenomenological aspects of the chromatographic processes and to
predict chromatographic column performance. Accurate prediction
of the chromatograms (effluent curves) requires correct character-
istic model parameters. Minimization of the errors between the
simulated chromatograms and the discrete measurement concen-
tration data is a common practice in order to accurately estimate
the parameters. For example, Wilhelm, Casamatta, Carillon, Rigal,
and Gaset (1989) proposed a model for the separation of sugars and
determined axial dispersion coefficient by parameter fitting. Li, Gu,
and Gu (1998) used mathematical modeling to fit the pore tortuos-
ity and pore diffusivity in a scale up experiment. Felinger, Zhou, and
Guiochon (2003) determined the competitive adsorption isotherm
by the inverse method.

Another effective strategy for estimation of the chromato-
graphic parameters is the moment analysis method. In 1965, Kubin
and Kucera introduced the analytical expressions of the statistical
moments of the chromatograms derived from a general rate model
(Kubin, 1965; Kucera, 1965). After that, a number of researchers
extended the work of Kubin and Kucera for various applications
(Haynes & Sarma, 1973; Moulijn, Kolk, & Rijnders, 1977; Suzuki,
1990). Most recently Miyabe (2009) systematically studied the
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behaviors of different chromatographic processes by moment anal-
ysis. The idea behind the moment analysis method is to determine
the retention (adsorption) equilibrium and mass transfer kinet-
ics from the moments of the chromatograms. In this conventional
moment analysis, only the 1st normalized moment and 2nd cen-
tral moment are analyzed because it is most difficult to measure
experimentally higher order moments with high accuracy (Miyabe
& Guiochon, 2003). The conventional method can be applied only
with linear isotherms which theoretically result in symmetric chro-
matograms.

Alopaeus, Laavi, and Aittamaa (2008) developed the weighted
residual moment method for dynamic plug-flow reactor mod-
els and simple plug flow chromatographic models. Roininen and
Alopaeus (2011) presented the weighted residual moment method
for solving the models including axial dispersion in reactors in a
successive paper. Recently Liu, Roininen, Pulkkinen, Sainio, and
Alopaeus (2013) extended the weighted residual moment method
to solve the nonlinear multicomponent chromatographic general
rate model. The weighted residual moment method is based on
minimization of errors in the column profile moments. This sug-
gests that the method predicts the moments of the chromatograms
also with minimized errors. Therefore the accurate predictions
of retention time (1st normalized moment), physical dispersion
(2nd central moment) and skewness (3rd central moment) of the
chromatograms can be achieved. This feature indicates that the
weighted residual moment method is especially suitable for the
chromatograms moment analysis. In the conventional moment
analysis, the moment values of the chromatograms are calculated
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with the available analytical expressions (Miyabe, 2009). In this
work, the moment values with minimized errors are obtained from
the simulated chromatograms. The numerical tool used to solve the
model is the weighted residual moment method.

In this paper the 1st normalized moment, 2nd central moment
and 3rd central moment are used in the moment analysis for
asymmetric chromatograms caused by nonlinear isotherms. The
moment values and the discrete concentration points of measured
chromatograms are used respectively in the objective functions
in order to estimate the model parameters. With the optimized
parameters by the two objective functions, simulations are per-
formed and the results are discussed. Finally, the merits of our
moment analysis method over the conventional method are dis-
cussed.

2. Research methods

2.1. The concepts of moments

The concepts of 1st normalized moment, 2nd and 3rd central
moments are first reviewed due to their fundamental nature in
this work. The mean, standard deviation and skewness of the chro-
matograms, closely related to the moments, are used in the moment
analysis of this work. A brief review on these definitions is pre-
sented below (Guiochon & Golshan-Shirazi, 1994).

The 1st normalized moment (M1), denoted also as �, is the
mean of the curve. For a chromatographic effluent curve it can be
expressed as:

� = M1 =
∫ ∞

0
C(t, L)t dt∫ ∞

0
C(t, L) dt

(1)

where C(t, L) is the concentration at the column exit, L is the column
length, and t is time. Eq. (1) is the continuous expression of the 1st
normalized moment. The measured and simulated chromatograms
appear as a number of discrete concentration points. Therefore the
moment values of the chromatograms are calculated from the def-
initions of the discrete forms of the moments in this work. For the
1st normalized moment,

� = M1 =
∑k

i=1C(ti)ti�ti∑k
i=1C(ti)�ti

(1a)

k is the total number of the experimental concentration points or
the simulated concentration points. The column length L is dropped
out from the equation above for simplicity. �ti is the time interval
between ith and (i − 1)th sampling points. If the sampling is with
constant frequency, then �ti drops away.

The 2nd central moment (M2) about the mean � is the variance.
It describes the “width” of the curve.

M2 =
∫ ∞

0
C(t, L)(t − �)2 dt∫ ∞

0
C(t, L) dt

(2)

The discrete form of 2nd central moment (M2) is:

M2 =
∑k

i=1C(ti)(ti − �)2�ti∑k
i=1C(ti)�ti

(2a)

Its square root is the standard deviation �, which is:

� =
√
M2 (3)

The 3rd central moment (M3) is a measure of the deviation from
symmetry of the curve. Any symmetric distribution will have a 3rd
central moment of zero. The skewness, � , closely related to the
3rd central moment is often used to describe the lopsidedness of
the curve. A distribution that is skewed to the right (the tail of the

distribution is longer on the right) will have a positive skewness. A
distribution that is skewed to the left (the tail of the distribution is
longer on the left) will have a negative skewness. The expressions
of M3 and � are:

M3 =
∫ ∞

0
C(t, L)(t − �)3 dt∫ ∞

0
C(t, L) dt

(4)

The discrete form of 3rd central moment (M3) is:

M3 =
∑k

i=1C(ti)(ti − �)3�ti∑k
i=1C(ti)�ti

(4a)

� = M3

�3
(5)

The effluent curve could also be characterized based on higher
order moments, such as kurtosis calculated by using the fourth
moment. However, this would need extremely accurate effluent
curve data which is not typically available. As kurtosis and higher
moments do not generally correspond to typical visually analyzed
effluent curve characteristics, contrary to the three first moments,
they are left out from the present study.

2.2. Experimental

The separation was  carried out in a pilot scale batch column
(inner diameter 0.225 m,  resin bed length 5.3 m, bed porosity
εb = 0.34) at 60 ◦C and with 30 l/h flow rate. The resin used in chro-
matographic separation test was  a strong acid cation exchange
resin (Finex CS 11 GC) in sodium form (particle porosity εp = 0.4).
Total feed volume was  11.5 l. Concentrations of glucose and galac-
tose were 10.61 g/100 ml  and 10.04 g/100 ml,  respectively. The
experimental setup was reported in more detail in Saari, Häkkä,
Jumppanen, Heikkilä, and Hurme (2010, p. 33). The distribution
coefficients were 1.08 and 1.24 for glucose and galactose respec-
tively from equilibrium measurement data (Saari, Heikkilä, &
Hurme, 2010, p. 55).

2.3. Mathematical model

Separation of monosaccharides is often based on ligand
exchange, i.e. formation of weak complexes with metal cations,
such as Ca2+, in the ion exchange resin. In the present work,
however, the ion exchange resin was  used in Na+ form, and the
separation is mostly due to size exclusion and to a smaller extent
to interactions with the functional groups of the resin. In order to
include such weak adsorptive interactions, the Langmuir isotherm
model was  used instead of a linear exclusion model. The general
rate model applied in this work is introduced in Wilhelm et al.
(1989) and Li et al. (1998). The dimensionless models for the bulk-
fluid phase and the particle phase are:

∂ b
∂�

= −∂ b
∂	

+ 1
Pe

∂2 b
∂	2

− 
( b −  p,r=1) (6)

∂ p
∂�

= �

εp

1
r2
∂

∂r

(
r2
∂ p
∂r

)
(7)

with the dimensionless initial and boundary conditions

I.C. � = 0;  b =  b(0,  	);  p =  p(0,  r, 	) (8)

B.C. 	 = 0,
∂ b
∂	

= Pe

(
 b − Cf (�)

Cref

)
; 	 = 1,

∂ b
∂	

= 0 (9)
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