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a b s t r a c t

A simple and effective procedure for the natural vibration analysis of rectangular bottom plate structures
in contact with fluid is presented. Structural part of the coupled hydroelastic problem covers thin and
thick rectangular plates and stiffened panels with different framing types. The eigenvalue problem is
formulated using Lagrange's equation of motion and taking into account potential and kinetic energies of
a plate structure and fluid kinetic energy, respectively. Natural frequencies and modes are obtained
applying the assumed mode method using the characteristic polynomials of a Timoshenko beam.
Potential flow theory assumptions are adopted for the fluid and the effect of free surface waves is
ignored. From the boundary conditions for the fluid and structure the fluid velocity potential is derived
and it is utilized for the calculation of added mass using the assumed modes. The developed theoretical
model is verified with several numerical examples dealing with the natural vibration of bare plates and
stiffened panels in contact with different fluid domains. A comparison of the results with those obtained
by a general purpose FEA software showed very good agreement, especially for the lowest natural
frequencies that are actually most relevant for the structural design from the viewpoint of vibration.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Bare and stiffened plates are primary structural members of
ships, offshore structures, submarines, etc., and it is very impor-
tant to assess their vibration properties to avoid resonance with
relevant excitation sources. It is generally known that plates and
stiffened panels in contact with fluid behave differently from the
same structures in the air. Namely, due to the effect of added mass,
their natural frequencies in contact with fluid are significantly
decreased which makes the vibration analysis rather complex. This
challenging problem has been investigated for many years and the
earliest works were done by Lamb (1921) and McLachlan (1932).
Apart from the above mentioned applications, natural vibration
analysis of plates/stiffened panels in contact with fluid is impor-
tant in the context of vibration of rectangular container bottoms
(Cheung and Zhou, 2000).

An extensive literature survey up to 1998 on the vibration analysis
of vertical and bottom plates in contact with fluid has been presented

by Zhou and Cheung (2000). Accordingly, analytical methods (Bauer,
1981; Soedel and Soedel, 1994), semi analytical ones (Amabili, 1996;
Cheung et al., 1985; Shafiee et al., 2014) and numerical methods
(Kerboua et al., 2008; Kwak, 1996; Marcus, 1978) are distinguished.
Nowadays, the finite element method (FEM) represents an advanced
and widespread numerical tool for different engineering applications
and in combinationwith the boundary element method (BEM), can be
successfully applied to the natural vibration analysis of plate structures
in contact with fluid. However, due to the rather lengthy model
preparation and numerical calculation at the preliminary design stage,
it is useful to have some simplified method at hand. Semi-analytical
approaches using classical approximate methods for plates and
analytical methods for fluid arise as an alternative since the analytical
ones are limited to very special and simple models.

Cheung and Zhou (2000) and Zhou and Cheung (2000) applied an
analytical-Ritz method to analyse the dynamic characteristics of the
fluid-structure interaction of vertical and horizontal rectangular plate,
neglecting the free surface waves. A theoretical Rayleigh-Ritz dynamic
model of the fuel assembly submerged in the coolant of research
reactor, leading to free vibration analysis of a bundle of identical
rectangular plates fully in contact with an ideal liquid is introduced by
Jeong and Kang (2013). In that paper the orthogonal polynomial
functions, as admissible ones, were generated by Gram–Schmidt
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process to approximate the wet dynamic displacements with a
clamped–clamped-free–free boundary condition, and potential flow
theory is adopted for fluid modelling. Many references in this field
actually deal with circular plates in contact with fluid. That is probably
the result of their wide applicability for instance in petrochemical
industry and relatively simpler mathematical formulation. Cheung and
Zhou (2002) analysed the vibration of a circular container bottom
plate using the Galerkin method and taking into account sloshing
effects. In some references, for instance (Amabili, 1996; Amabili and
Kwak, 1996; Espinosa and Gallego-Juarez, 1984; Kwak, 1997;
Tariverdilo et al., 2013) hydroelastic vibration of circular plates in
contact with infinite fluid is studied. In all above references, the thin
plate (Kirchhoff) theory is applied, and to the authors' knowledge,
there is a rather limited number of papers dealing with thick (Mindlin)
plate theory which takes into account transverse shear effects and
rotary inertia. Recently, Hosseini Hashemi et al. (2010) applied the Ritz
method in the vibration analysis of thick vertical rectangular plates on
elastic foundations in contact with fluid. They expressed three
displacement components of the plate by adopting a set of static
Timoshenko beam functions satisfying geometric boundary condi-
tions. A fluid domain with finite depth and width, but infinite in
length direction is considered, and the method of the separation of
variables and the Fourier series expansion method are used for fluid
modelling.

Moreover, to the authors' knowledge there are only several
studies dealing with the dynamic analysis of stiffened panels in
contact with fluid. Schaefer (1979) replaced the stiffened plate with
an orthotropic plate and exploited the concept of an equivalent
system to analyse natural vibration of stiffened plate with different

edge constraints, fully immersed and in contact with water, respec-
tively. The natural frequencies of vertical stiffened panels with thin
plates and slender stiffeners in contact with water are analysed by
Nishino et al. (1995) and Takeda and Niwa (2000), using the energy
method and expanding the velocity potential in water as a series of
harmonic waves. Recently, based on the Rayleigh–Ritz approach Li
et al. (2011) presented theoretical modal analysis model for the
stiffened bottom plate and finite fluid domain, neglecting the free
surface waves and taking into account the effects of bending,
transverse shear and rotary inertia in both the plate and stiffeners.
Comparisons with FE and experimental results are presented and the
mode reversal phenomenon is discussed.

Up to now, the assumed mode method using the characteristic
polynomials of the Timoshenko beam (Chung et al., 1993) is
successfully applied to the dry vibration analysis of rectangular
plates and stiffened panels with arbitrary boundary conditions
(Kim et al., 2012; Cho et al., 2013, 2014, 2015). This concept very
similar the Rayleigh–Ritz method (Liew et al., 1995), but instead of
minimizing the energy functional, it opts to apply Lagrange's
equation of motion. Actually, different variants of Ritz method
are used in plate vibration analysis for many years, very often with
two dimensional polynomials (Liew et al., 1993) or static
Timoshenko beam functions (Dawe and Roufaeil, 1980) for the
longitudinal and transverse direction. Free vibration of Mindlin
plates with arbitrary boundary conditions in lower and higher
frequency domain are also successfully analysed by applying DSC-
Ritz method (Hou et al., 2005; Lim et al., 2005). The idea to apply
the assumed mode method to the wet vibration analysis of bottom
plate systems originates from Kim et al. (2008).

Nomenclature

A area of beam cross-section
Ak, Bk, Ck coefficients of orthogonal polynomials
a plate/panel length
amn, bmn, cmn influence coefficients of orthogonal polynomials
b plate/panel width
c length of fluid domain
D plate flexural rigidity
d width of fluid domain
E Young's modulus
e depth of fluid domain
G shear modulus
h thickness of plate
I moment of inertia of beam cross-section
J mass moment of inertia of stiffener
j¼

ffiffiffiffiffiffiffiffi
�1

p
imaginary unit

k shear coefficient
KT non-dimensional translational stiffness
kT translational spring constants per unit length
KR non-dimensional rotational stiffness
kR rotational spring constants per unit length
L beam length
M, N number of orthogonal polynomials in x and y

directions
m, n indexes of orthogonal polynomials in x and y

directions
nx, ny number of stiffeners in x and y directions
p, q indexes of trigonometrical series in ~x and ~ydirections
r non-dimensional parameter for area moment of

inertia
S stiffness ratio
s non-dimensional parameter for beam rigidity

T kinetic energy
t time
V potential energy
W transverse deflection amplitude
w transverse deflection
x,y coordinates of plate/panel
~x; ~y; ~z coordinates of fluid domain
Xð ~xÞ;Yð ~yÞ; Zð~zÞ; _TðtÞ assumed solutions of velocity potential in

~x; ~y; ~z directions and time
Xm ξ
� �

;Yn η
� �

orthogonal polynomials to represent transverse
deflection in x and y directions

K½ � stiffness matrix
M½ � mass matrix
qðtÞ� �

generalized coordinates vector
α¼ a=b aspect ratio of plate/panel
β¼ e=d depth to width ratio of fluid domain
ΓP ;ΓW plate and fluid area in bottom
~ζ non-dimensional coordinate for fluid in z direction
η; ~η non-dimensional coordinates of plate/panel and fluid

in y direction
λ¼ c=d length to width ratio of fluid domain
ν Poisson's ratio
ξ; ~ξ non-dimensional coordinates of plate/panel and fluid

in x direction
ρ;ρW densities of structure and fluid
ϕ velocity potential
Ψm ξ

� �
;Φn η

� �
orthogonal polynomials to represent rotational

angles about x and y axes
ψ x;ψ y rotational angles of plate cross-section about x and

y axes
Ω fluid domain
ω angular frequency
∇ Hamilton differential operator
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