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a b s t r a c t

The linear Boussinesq equations are an ideal model for transoceanic propagation of tsunamis. However,
they are impractical for real-time application because Boussinesq-type equation models rely on a fine
grid system and therefore require a huge computational domain. Thus, shallow-water equations models
are the preferred method of predicting propagation and run-up of near- and far-field tsunamis since they
produce fairly accurate results with a much smaller computational requirement. There may be an
additional benefit in including physical dispersion effects in numerical models since shallow-water
equations theoretically neglect the effect of dispersion on the transoceanic propagation of tsunamis. In
this study, a modified finite difference scheme was proposed that adds terms to the linear shallow-water
equations in order to account for varying water depths. The proposed model was verified by applying it
to tsunami propagation over a submerged shoal and the results were compared with those of the well-
known Boussinesq equations model, FUNWAVE. The proposed model was further tested by simulating
transoceanic tsunami propagation on real topographies and comparing the numerical results with
available observed data.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Tsunamis can be triggered by impulsive ground motions such as
undersea earthquakes, landslides, or meteorite impacts. A tsunami
generated by an undersea earthquake will travel in all directions from
its point of origin and, upon approaching a coastal area, the shoaling
effect will cause it to increase in amplitude. This phenomenon causes
severe damage to seaside towns and coastal zone facilities.

The occurrence frequency of devastating tsunamis has markedly
increased over the last several decades. On March 11, 2011, the East
Japan Earthquake generated a tsunami that hit the Pacific coast of
Japan along the Japan Trench zone. The tsunami has been regarded as
the largest in Japan’s recorded history (Hayashi et al., 2011), and it was
particularly devastating because it originated from a location very near
coastal communities and made landfall before area residents had time
to evacuate. The number of deaths and missing persons reached
almost 20,000, and the property damage totaledmore than 300 billion
USD including Japan, Chile, Hawaii and California coast in USA acco-
rding to the NOAA website (http://www.ngdc.noaa.gov/hazard/hon
shu_11mar2011.shtml). Post-tsunami surveys of run-up and inunda-
tion reported that the maximum run-up reached approximately 40 m
in the Tohoku region (Mori et al., 2011).

It is essentially impossible to forecast an undersea earthquake
that may trigger a tsunami. However, tsunami damage may be
mitigated through alternative means, such as a tsunami warning
system. A properly established warning system must be based
on numerical modeling that accounts for multiple compounding
variables, such as tsunami generation, propagation, and run-up
processes, and that predicts important information including
arrival time and run-up heights. Thus, the development of an
accurate and efficient numerical model for computing tsunami
propagation is paramount in tsunami preparation and damage
mitigation.

Over the past several decades, multiple numerical models for
simulating transoceanic tsunami propagation have been devel-
oped. According to Kajiura and Shuto (1990), frequency dispersion
plays an important role in tsunami propagation over long dis-
tances. On the other hand, the small wave slope of a typical
tsunami results in an insignificant nonlinear advective inertia force
that can be disregarded (Imamura et al., 1988). Therefore, the
linear Boussinesq equations, which include weak dispersion eff-
ects, should accurately simulate the transoceanic propagation of
tsunamis (Imamura et al., 1988). However, due to higher-order
dispersion terms that arise during the modeling of long-distance
propagation, the Boussinesq equation models must be processed
with finer spatial and temporal resolutions and higher-order
numerical algorithms to avoid numerical dispersion and trunca-
tion errors that can affect the accuracy of model results. These
finely resolved grids increase the computational expense of the
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Boussinesq equation models, and are generally overcome by using
implicit schemes that enhance computational stability.

Recent advancements in computer technology have allowed for
the direct application of the Boussinesq-type equation for tsunami
simulations and case studies (Grilli et al., 2007, 2010; Ioualalen et
al., 2007; Park et al., 2013; Lynett et al., 2012a, 2012b). Although
running such models over large, ocean basin-scale grids with
sufficiently fine resolution is no longer unattainable, it still
requires very high computational costs such as a parallel comput-
ing system (Grilli et al., 2013; Ha et al., 2014). The computation
time required for modeling with the Boussinesq-type equations is
a severe limitation in their use in a time-sensitive tsunami
warning system. Since tsunamis travel quickly and can cause
extensive damage to coastal regions in a very short time, brief
but accurate computation is necessary for an early tsunami
warning system. Furthermore, a tsunami hazard map, drawn using
repeated virtual tsunami simulations, could be useful in saving
lives, but would require a large time investment to analyze enough
scenarios with the Boussinesq-type equations. Therefore, the
shallow-water equation models are generally preferred by scien-
tists and engineers to simulate tsunami propagation and run-up
because they offer efficient computation capability without sacri-
ficing too much accuracy. These shallow-water equations models
have been used in many successful tsunami case studies (Cheung
et al., 2011; Apotsos et al., 2011; Kilinc et al., 2009; Nandasena et
al., 2012). Among others, the new version of COMCOT (COrnell
Multigrid COupled Tsunami Model), a well-known tsunami model
based on the shallow-water theory with improved dispersion
effects (Wang and Liu, 2011), has been released recently and
applied to various tsunami cases (Chai et al., 2014; Lynett et al.,
2012a,b; Son et al., 2011; Wijetunge, 2012).

Imamura et al. (1988) presented a finite difference model for
the simulation of transoceanic tsunami propagation using the
shallow-water equations models. Their model solves the linear
shallow-water equations using the explicit leap-frog scheme on a
staggered-grid system. The linear shallow-water equations do not
address frequency dispersion, but related terms are taken into
account by adjusting the numerical dispersion. However, the
frequency dispersion effects that are diagonal to the principle axes
of the computational domain are not properly represented in the
algorithm. Cho (1995) improved the numerical algorithm to
properly include frequency dispersion effects in all directions of
tsunami propagation. However, the grid size needs to be locally
adjusted according to the time step and the local water depth, and
therefore this approach is difficult to implement. Cho et al. (2007)
proposed a modified scheme that achieves improved accuracy by
addressing the spatial-grid and temporal-step size limitations
using dispersion-correction terms. However, these improved num-
erical models were developed using governing equations derived
by assuming a constant water depth, and therefore they produced
numerical errors when they were used to simulate transoceanic
tsunami propagation over the real-sea bathymetry, where water
depth varies continuously.

In this paper, a novel, modified dispersion-correction scheme
was presented that introduced additional terms to the scheme
proposed by Cho et al. (2007). The governing equations were
derived based on an assumption of varying water depth, and a
numerical scheme describing distant propagation of tsunamis was
proposed. The proposed numerical scheme corrects for the Gaus-
sian shape of the free surface, and wave propagation over a
submerged shoal is considered. The predicted results were com-
pared with those obtained using FUNWAVE (Wei et al., 1995) to
verify their accuracy, and they were then applied to case studies in
real topographies: the Central East Sea Tsunami on May 26, 1983
and the Tohoku Tsunami on March 11, 2011.

2. Governing equations

2.1. Linear Boussinesq equations

The propagation of tsunamis over long distances is significantly
influenced by frequency dispersion, which must be accounted for
to achieve accurate simulation of tsunami propagation. Nonlinear
convective inertia force, however, is not a significant variable and
can be excluded in propagation modeling. Thus, the Boussinesq
equations, which include dispersion terms, are more accurate
governing equations for simulations of transoceanic tsunami prop-
agation than conventional shallow-water equations that do not
contain dispersion terms (Imamura et al., 1988; Liu et al., 1994).
The linear Boussinesq equations are:
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where ζ is the free-surface displacement; h is the still-water
depth; P and Q are the depth-integrated volume fluxes in the
x- and y-axis directions, respectively; and g denotes the accelera-
tion of gravity. Eqs. (2) and (3) include the dispersion terms on the
right-hand side. Since dispersion terms can contain both high-
order derivatives and mixed space–time derivatives, equations
containing these terms are very difficult to use for tsunami
propagation simulations.

Assuming water depth is constant, the linear Boussinesq
equations can be simplified by employing the long wave approx-
imation (Liu et al., 1994):
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Cho et al. (2007) developed a numerical model for simulating
tsunami propagation using the above equation. They replaced the
physical dispersion of the linear Boussinesq equations with mod-
ified numerical dispersion, which was generated by discretization
of the shallow-water equations using the leap-frog scheme. How-
ever, their governing equation was derived using a constant water
depth, and therefore, their model could not be applied to rapidly
varying topographies.

In the present study, the governing equation was derived using
a first-order equation in horizontal coordinates to represent water
depth, resulting in a bottom slope with the following coefficients:
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where a and b are calculated under local approximation and
treated as constants in deriving Eq. (7). The present model used
an explicit method and numerical algorithm including a bottom
slope was calculated using locally 5 adjoined grid points [using
i; jð Þ; iþ1; jð Þ; i�1; jð Þ; i; jþ1ð Þ; i; j�1ð Þ points for a given i; jð Þ point]
at each time step. In real topography, bottom slopes were not
drastically changed in locally 5 grid points, and thus those could be
treated as locally constant in the governing equations. Then, Eqs.
(5) and (6) allow the linear Boussinesq equation to be reduced to:
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