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A two-dimensional nonlinear wave-body interaction problem is solved by a desingularized integral method in
combination with a mixed Euler-Lagrange method. A special treatment of the intersection point singularity is
introduced by employing an optimal technique to smooth the wave elevation around the intersection point
and the utilization of a free surface control point distribution. By this means the nonlinear boundary effects
arising from body surface and free surface are taken into consideration in addition to the development of a free
surface Rankine source distribution method. A Lagrangian formulation is applied to capture the time-
dependent motion of the control points and source points to describe the body and free surface nonlinear
boundary conditions. The validation of the proposed method is demonstrated by comparing findings with a
selection of existing numerical and experimental data.
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1. Introduction

The Rankine source method in association with a desingular-
ized method and a mixed Euler-Lagrange method formulates an
approach to solve wave-body interaction problems avoiding free
surface singularities and permits description of a range of non-
linear wave motion problems. The Euler-Lagrange method was
introduced by Longuet-Higgins and Cokelet (1976, 1978) as a time
stepping scheme to solve surface wave problems. That is, the field
equation is solved through an Euler specification so that the
velocity potential is expressed in a boundary integral form and
the fluid boundary control points vary with time in the nonlinear
boundary problem. This allows description of velocity along the
control points in a Lagrange specification.

The far field radiation condition requires careful treatment in the
Rankine source method. The infinite free surface integral domain in
this method is truncated to a bounded domain but the truncated
boundary may cause a reflective wave propagation disturbance. The
accuracy and efficiency of numerical results lie in the distributed
density of source points and the truncation of the free surface. Several
numerical techniques are available to avoid wave reflection, amongst
which a numerical beach is widely employed. This method was
originated by Israeli and Orszag (1981) who added a Newtonian
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cooling term and a Reynolds viscosity damping term to the free
surface equation. The former acts as a damper absorbing free surface
disturbances where the latter modifies the wave dispersion caused by
this artificial damping. This method has been further extended to
various linear and nonlinear wave-body radiation problems and it is
applicable to a large range oscillatory wave frequencies (Sclavounos
and Nakos, 1988; Cointe, 1989; Kring, 1994; Nakos et al.,, 1994; Kring
and Sclavounos, 1995; Kim et al.,, 1997; Huang, 1997). For example, to
avoid wave reflection, Kim et al. (1997) employed a kinematic free
surface condition equipped with Newtonian cooling and Rayleigh
viscosity damping terms, whereas Tanizawa (1996) and Koo and Kim
(2004, 2007) added Newtonian cooling to the kinematic free surface
boundary condition and introduced damping terms to the dynamic
free surface boundary condition. However, the terms added to the free
surface boundary conditions give rise to artificially induced numerical
errors. In the desingularized method, the free surface domain is
divided into inner and outer domains. A fixed number of control
points is evenly distributed in the inner domain, whereas in the outer
domain neighboring control point distances increase exponentially
(Lee, 1992). Due to the periodic characteristic of a wave, the numerical
computation can be completed before the surface wave reaches the
truncated boundary. This produces a postponement of the wave
refection from the truncation boundary and satisfactory results can
be obtained (Zhang, 2007).

Previous research adopting this desingularized method either
takes account of the nonlinear free surface condition but ignores
the nonlinear body surface condition (Cao et al., 1991, 1992, 1993,
1994; Lee, 2003; Beck et al., 1994; Beck and Scorpio, 1995; Scorpio,
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1997; Subramani et al., 1999; Finn, 2003) or otherwise applies the
nonlinear body surface condition whilst keeping the linear free
surface condition (Zhang and Beck, 2006, 2007, 2008; Bandyk,
2009; Zhang et al., 2010a,b; Bandyk and Beck, 2011). For very large
body motions, each of these methods neglect components of the
nonlinearity existing in the interaction.

For the nonlinear problem taking account of both nonlinear
effects from body surface and free surface, the previously refer-
enced source distribution methods are no longer adequate. In this
paper to overcome these limitations, a new frequency dependent
control point distribution scheme is developed. Similar to the
traditional desingularized method, inner and outer free surface
domains are kept. However the control points are no longer
distributed evenly in the inner domain. The parameter to deter-
mine the exponent in the outer domain is also changed to allow
for a larger free surface to be covered. The neighboring control
point distances are assessed through a proportionally scheme
relating to the top panel size on the body to improve numerical
stability and accuracy. Moreover, in the traditional desingularized
methods the control points are distributed in the calm water
surface, whereas in the present nonlinear desingularized method
they are distributed on the nonlinear free surface.

The intersection points of the body and free water surface move in
both horizontal and vertical directions as the water surface moves up
and down. The singularity at the intersection points, the confluence of
body surface and water surface boundaries, generates a surface wave.
This singularity can lead to numerical difficulties or even divergence if
the intersection points are not properly treated (Kang, 1988; Tsai and
Yue, 1996). Vinje and Brevig (1981) applied a body boundary rather
than a free surface boundary condition at the intersection points and
their positions together with the velocity potential at the intersection
points are obtained by extrapolation. The results produced from this
approach were not satisfactory. To derive acceptable results from the
method, Greenhow et al. (1982) found that it was necessary to use
experimental measurements to allocate the intersection points in the
process of their computation. Lee (1992) assumed that both body and
free surface boundary conditions are satisfied at the intersection
points. Similarly, Beck (1994) considered the intersection points as
free surface control points and thus free surface boundary conditions
are satisfied at the intersection points whereas the body boundary
condition is satisfied on the top panels covering the intersection
points. A desingularized source is then placed vertically above each of
the intersection points. Beck (1994) also discussed the placing of a
desingularized control point inside the body, regarding the intersec-
tion points as free surface control points. In the present paper, in order
to match the new control points distribution, the intersection points
are only treated as body panel grid points rather than free surface
control points.

In a Lagrange specification, fluid boundary control points are
treated as fluid particles. Therefore discrepancies arising from the
singularity associated with intersection points rapidly increase and
lead to divergent solutions in the numerical scheme. This problem was
encountered when a mixed Euler-Lagrange method was first applied
and referred to as a sawtooth instability (Longuet-Higgins and Cokelet,
1976, 1978). It was observed that the rate of growth of the instability is
independent of the number of time iteration steps, is not influenced
by rounding errors and relates to the adopted numerical method and
the physical nature of the wave problem. Hence it is necessary to use a
smoothing technique (Ferrant, 1997) to the surface wave around the
intersection points in the time iteration process.

Longuet-Higgins and Cokelet (1978) introduced a five-point
Chebyshev smoothing (filtering) formula to remove the instability
for two-dimensional problems and demonstrated the superiority
of this five-point approach. Five-point filtering techniques are
widely adopted and modified for three-dimensional problems
(Xu, 1992; Kring, 1994; Nakos et al., 1994; Kring and Sclavounos,

1995; Kring et al., 1996; Kim et al., 1997; Yan, 2010). Improved
results are obtained if higher order polynomial smoothing techni-
ques are employed (Dold, 1992). Koo and Kim (2004) and Zhang
et al. (2006) developed a fourth order Chebyshev polynomial
method to improve numerical accuracy. The disadvantage of this
filtering technique is the occurrence of error spikes although an
error spike can be minimized applying the filtering technique,
there is a minimum period of application below which the error
spike becomes significant and there is a maximum period of
application above which the sawtooth instability occurs. Baker
et al. (1982) and Lin et al. (1984) utilized a relatively economic
smoothing operator technique to identify the iteration divergence.
In the present numerical simulation process, we adopt a new
smoothing method using the least square principal, which
involves only three points. The method is demonstrated to be
very efficient in removing the sawtooth instability and error spike.

Due to the application of nonlinear body and free surface boundary
conditions, it is necessary to regrid the body surface and free surface
control points in both horizontal and vertical directions. In the time
iteration process, the number of wetted body surface control points
and the number of free surface control points remain constant.
Therefore, the size of the influence coefficients matrix is independent
of time. As a result of body oscillation, the intersection points are
restricted to move in the calm water surface due to the absence of
shear force in a potential flow theory. However, the positions of free
surface control points and desingularized free surface source points
vary vertically and horizontally due to the nonlinear free surface
assumption. The force exerted on the wetted body surface depends on
the velocity, V¢, and the acceleration potential 22. The estimation of %
was discussed by Tanizawa (1995), Bandyk and Beck (2011) and Koo
and Kim (2004). In the present paper, the velocity, V¢, on a body
surface control point is the time derivative of that control point in the
Lagrange specification whereas the acceleration potential ”ait’ is calcu-
lated by using the total derivative ‘Zl—‘{’ at a body surface control point in
the Lagrange specification and hence % is approximated as a forward
difference of the velocity potential with respect to the time variable.

In a three-dimensional high-order Rankine source method using
continuous free surface panels, the free surface is discretized as grids
of quadrilateral facets and the unknown quantities are represented in
the form of biquadratic spline sheets on these facets. In order to
comply with this high order spatial discretization, an Emplicit Euler
scheme is applied to the temporal discretization process to achieve
neutral numerical stability. The free surface kinematic boundary
condition is presented in an explicit Euler discretization in time which
uses the past time step solutions of fluid velocity to update the
velocity. The dynamic boundary condition is satisfied through an
implicit Euler discretization which employs the current solution of
wave elevation to update the present velocity potential (Sclavounos
and Nakos, 1988; Nakos, 1990; Nakos and Sclavounos, 1990; Kring and
Sclavounos, 1995; Kim et al., 1997; Huang, 1997). The Rankine source
method using the desingularized approach on the free surface
simplifies the numerical discretization.

2. Mathematical equations
2.1. Euler formulation

Fig. 1 illustrates a floating symmetric body undergoing forced
heave motion in a two-dimensional fluid of infinite depth. The
vertical body motion is described by the time-dependent function

é=a sin wt M

for an oscillation of amplitude, a, and frequency, w. The fluid
motion is described by a coordinate frame of reference Oxy
centered on the vertical middle line of the body. The calm water
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