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a b s t r a c t

In this work, an approximate method called Optimal Homotopy Asymptotic Method (OHAM) is proposed
and implemented for the numerical solution of Whitham–Broer–Kaup (WBK) equations with blow-up
and periodic solutions. Results obtained through OHAM are compared with the exact as well as with the
results available in the literature. It was revealed that only second-order OHAM solutions are sufficient to
achieve the desired accuracy in comparison to the higher order solutions of the methods we have made
comparison with.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Most of the phenomena of physical and engineering interest are
governed by nonlinear differential equations (DEs). So, for the last
few decades, a great deal of attention has been directed towards the
solution (both exact and numerical) of these problems. Unfortu-
nately, very few of them have their exact solution and the research-
ers are forced to look for the numerical solution of such problems.
Various methods are available in the literature for the exact and
numerical solution of these problems. These include the homoge-
neous balance method, Cole–Hopf transformation, tanh method,
sine–cosine method, similarity reduction method, Darboux transfor-
mation, Backland transformation (Whitham, 1967, 1974; Broer, 1975;
Kaup, 1975; Kupershmidt, 1985; Ablowitz and Clarkson, 1991; Cox
et al., 1991; Wang et al., 1996; Wang, 1995; Yan and Zhang, 1999),
homotopy perturbation method (HPM) (Ganji and Rajabi, 2006;
He, 1999b, 2000, 2005a, 2005b, 2005c), homotopy analysis (HAM)
(He, 2006a), Adomian decomposition method (ADM) (Adomian,
1994; Wazwaz, 2002), variational iteration method (VIM) (Abdou
and Soliman, 2005; He, 1998a, 1998b, 1999a, 2006b; He and
Wu, 2006) and optimal homotopy asymptotic method (Haq and
Ishaq, 2012; Ishaq and Haq, 2014).

Perturbation methods (Awrejcewicz et al., 1985; Acton and
Squire, 1985) have been used for the solution of nonlinear
problems in science and engineering. But, the following limita-
tions restrict the applicability of these methods:

Most of these methods require the existence of a small
parameter in the equation. But majority of nonlinear equations,

especially those having strong nonlinearity, have no such para-
meter. An unsuitable choice of such parameter would lead to very
bad results. It is not that easy to chose this parameter. The
solutions obtained through perturbation methods can be valid
only when a small value of the parameter is used. Hence, it is
necessary to check validity of the approximations through experi-
mental and/or numerical processes (Lee et al., 1997).

In HPM, HAM and OHAM, the concept of homotopy from
topology and conventional perturbation technique were merged
to propose a general analytic procedure for the solution of non-
linear problems. Thus, these methods are independent of the
existence of a small parameter in the problem at hand and thereby
overcome the limitations of conventional perturbation technique.
OHAM, however, is the most generalized form of the remaining
two as it employs a more general auxiliary function H(p) in place
of HPM's �q and HAM's ℏq.

OHAMwas developed by Marinca et al. (2008, 2009) and Marinca
and Herisanu (2008). The concept of auxiliary function in OHAM was
taken from homotopy continuation method (HCM) and homotopy
analysis method (HAM). For a detailed discussion the reader is
referred to Marinca and Herisanu (2011). Instead of infinite series
as is required in HAM, one needs only a few terms in OHAM, mostly
two or three terms. This is because of the use of convergence control
constants used in the auxiliary function. The OHAM is equally
effective for ordinary and partial differential equations. Herisanu
et al. used OAHM to determine analytical treatment of nonlinear
vibration of an electrical machine and oscillators with discontinuities
and fractional-power restoring force (Herisanu et al., 2008; Herisanu
and Marinca, 2010a, 2010b). Solution of stagnation point flow with
heat transfer analysis, and Couette and Poiseuille flows for fourth
grade fluid were obtained using OHAM by Shah et al. (2010a, 2010b).
Joneidi et al. managed to apply the method to micropolar flow in a
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porous channel with high mass transfer (Joneidi et al., 2009), Javed
Ali et al. used the method to multipoint boundary value problems
(Ali et al., 2010) and solutions of Jeffery–Hamel flow problem were
obtained by Esmaeilpour and Ganji (2010). OHAM solutions were
obtained for Couette and Poiseuille flows of a third grade fluid in
Islam et al. (2010) and mixed convection flow past a vertical plate
was solved with OHAM in Babaelahi et al. (2010). The technique was
also used for the solution of special fourth- and sixth-order problems
(Idrees et al., 2010b, 2010c). Linear and nonlinear Klein–Gordon
(Iqbal et al., 2010) and squeezing flow problem (Idrees et al., 2010a)
were studied using this method. This shows that OHAM has its
validity and potential for the solution of linear nonlinear problems in
science and engineering applications.

In this paper, we apply OHAM to solve the coupled Whitham–

Broer–Kaup (WBK) equations

∂Uδ
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where Uδ ¼ Uδðx; tÞ represents horizontal velocity field and height
deviating from the equilibrium position respectively. The γ;s are
constants representing different diffusion powers. Eqs. (1) are the
governing equations of dispersive long wave in shallow water.
If γ¼1, s¼0, Eqs. (1) reduce to modified Boussinesq equation, and
if γ¼0, s¼1, the system represents classical long wave equation
representing shallow water wave with dispersion.

The rest of the paper is organized as follows: In Section 2, the
proposed method is described. OHAM solutions of the problem are
given in Section 3, whereas Section 4 is devoted to the conclusion.

2. Description of the technique for coupled problems

In this section, we give an outline of the proposed method for a
coupled system. For this, let us consider the following coupled
equations:

LðUδðx; tÞÞþ f δðxÞþN ðUδðx; tÞÞ ¼ 0; xAΩ ð2Þ

B Uδ;
∂Uδ

∂x

� �
¼ 0; xA∂Ω; δ¼ 1;2 ð3Þ

where L and N are linear and nonlinear operators respectively,
f δ are known functions, Uδ are unknown functions and B is a
boundary operator.

Thus OHAM is given by Marinca et al. (2008, 2009), Haq and
Ishaq (2012), Marinca and Herisanu (2008)

ð1�pÞ½Lðϕδðη; pÞÞþ f δðηÞ� ¼ HδðpÞ½Lðϕδðη;pÞÞþ f δðηÞþN ðϕδðη;pÞÞ� ð4Þ

B ϕδðη;pÞ; ∂ϕ
δðη; pÞ
∂η

� �
¼ 0; δ¼ 1;2 ð5Þ

where pA ½0;1� is an embedding operator. The functions ϕδ are
unknown and Hδ are auxiliary functions such that

HδðpÞ ¼
∑
1

j ¼ 1
Cδ
j p

j if pa0

0 if p¼ 0:

8><
>: ð6Þ

For our computational work we use

HδðpÞ ¼
∑
m

j ¼ 1
Cδ
j p

j if pa0

0 if p¼ 0;

8><
>: ð7Þ

where Cδ
j 's (j¼ 1;2;…;m) are constants to be determined.

According to the new developments of OHAM, in order to
increase the accuracy of the results (if necessary) and also for a fast

convergence, the last term of the sumwithin Eqs. (7) could involve
a physical parameter (such as the time) (Herisanu and Marinca,
2010a, 2010b; Marinca and Herisanu, 2010). Thus

HδðpÞ ¼
∑

m�1

j ¼ 1
Cδ
j p

jþpmϑδðtÞ if pa0

0 if p¼ 0:

8><
>: ð8Þ

In our case

ϑδðtÞ ¼ Cδ
mþCδ

mþ1t: ð9Þ
It may be noted that in the text below the notation OHAM1 will be
using when getting the solution with HδðpÞ given in Eq. (7).
Similarly OHAM2 means that we are using Eq. (8). By definition of
homotopy

ϕδðη;0Þ ¼ Uδ
0ðηÞ; ϕδðη;1Þ ¼ UδðηÞ ð10Þ

where Uδ
0 are obtained from Eqs. (4) and (5) when p¼0, i.e., for

p¼0

LðUδ
0ðηÞÞþ f δðηÞ ¼ 0; B Uδ

0;
∂Uδ

0
∂η

� �
¼ 0: ð11Þ

Now by Taylor's series, we have

ϕδðη; p;Cδ
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0ðηÞþ ∑
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where

Uδ
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�����
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ð13Þ

Using Eqs. (7) and (12) in Eqs. (4), (5) and equating like powers of
p we have
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1
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where NmðUδ
0ðηÞ;Uδ

1ðηÞ;…;Uδ
mðηÞÞ is the coefficient of pm, in the

expansion of Nðϕδðη; p;Cδ
j ÞÞ with respect to the embedding para-

meter p (Marinca and Herisanu, 2014):

N ðϕδðη; p;Cδ
j ÞÞ ¼N 0ðUδ

0ðηÞÞþ ∑
mZ1

NmðUδ
0ðηÞ;Uδ

1ðηÞ;…;Uδ
mðηÞÞ;

j¼ 1;2;… : ð16Þ
It should be noted that Uδ

k, for kZ1, are governed by Eqs. (11)–(15)
which also involve their linear boundary conditions derived from
the original problem and can be solved easily.

The convergence of the series (12) depend upon the auxiliary
constants Cδ

j ; jAN. Putting p¼1 in Eqs. (12), we obtain

Uδðη;Cδ
j Þ ¼ Uδ

0ðηÞþ ∑
kZ1

Uδ
kðη;Cδ

j Þ; j¼ 1;2;… ð17Þ

In actual calculation

ðUδÞðmÞðη;Cδ
j Þ ¼ Uδ

0ðηÞþ ∑
m

k ¼ 1
Uδ
kðη;Cδ

j Þ; j¼ 1;2;… ð18Þ

Substituting Eqs. (18) into Eq. (2), we get the following residual:

Rδðη;Cδ
j Þ ¼LððUδÞðmÞðη;Cδ

j ÞÞþ f δðηÞþN ððUδÞðmÞðη;Cδ
j ÞÞ; j¼ 1;2 ð19Þ

When Rδðη;Cδ
j Þ ¼ 0, then ððUδÞðmÞðη;Cδ

j ÞÞ correspond to the exact
solution.

However, when Rδðη;Cδ
j Þa0, then taking kiAΩ; i¼ 1;2;…;m

and substituting η¼ ki in Eq. (19) equating to zero, we having the
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