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a  b  s  t  r  a  c  t

In this  work,  we  present  a generalized  method  for analysis  of  data  series  based  on shape  constraint  spline
fitting  which  constitutes  the  first  step  toward  a statistically  optimal  method  for qualitative  analysis  of
trends.  The  presented  method  is  based  on  a branch-and-bound  (B&B)  algorithm  which  is  applied  for  glob-
ally optimal  fitting  of a spline  function  subject  to  shape  constraints.  More  specifically,  the  B&B  algorithm
searches  for  optimal  argument  values  in which  the  sign  of the  fitted  function  and/or  one  or  more  of  its
derivatives  change.  We  derive  upper  and  lower  bounding  procedures  for the  B&B  algorithm  to efficiently
converge  to the  global  optimum.  These  bounds  are  based  on  existing  solutions  for  shape  constraint  spline
estimation  via  Second  Order  Cone  Programs  (SOCPs).  The  presented  method  is demonstrated  with  three
different  examples  which  are indicative  of both  the  strengths  and  weaknesses  of  this  method.

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

This study was initiated in the context of qualitative analysis of
trends. Such analysis concerns the abstraction of univariate or mul-
tivariate data series into qualitative descriptions. Most typically,
qualitative analysis is focused on assessment of the sign of the first
and/or second derivative of a time series. To do so, a data series
is segmented into contiguous episodes within which the trends
underlying to a data series are determined to have the same sign of
the first derivative and/or second derivative. Such a segmentation is
referred to as a qualitative representation (QR). We  stress here that
qualitative analysis of trends does not deal with the analysis of qual-
itative data which constitutes a particular branch in statistics of its
own (Bryman & Burgess, 1993; Miles & Huberman, 1994). In what
follows, we will use the term qualitative analysis for qualitative
analysis of data series.

So far, qualitative analysis has primarily gained attention in
the engineering literature. In this context, qualitative analysis
enables to tie coarse-grained expert knowledge with automated,
on-line data-based assessment tools. Typical engineering chal-
lenges attacked with this approach are process data mining
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(Stephanopoulos, Locher, Duff, Kamimura, & Stephanopoulos,
1997; Villez et al., 2007), reaction end-point detection (Villez,
Rosén, Anctil, Duchesne, & Vanrolleghem, 2008, 2012) and, most
popularly, process fault detection and identification (FDI) (Colomer,
Melendez, & Gamero, 2002; Janusz & Venkatasubramanian, 1991;
Maurya, Paritosh, Rengaswamy, & Venkatasubramanian, 2010;
Maurya, Rengaswamy, & Venkatasubramanian, 2005; Rengaswamy
& Venkatasubramanian, 1995; Rubio, Ruiz, & Mélendez, 2004;
Venkatasubramanian, Rengaswamy, & Kavuri, 2003; Villez, Keser, &
Rieger, 2009). The main advantage lies in the limited requirements
for detailed process models or control design. Indeed, intuitive rule
bases or tables can easily be generated and used to determine
proper action once a QR of a time series is obtained (e.g., Villez
et al., 2008).

A common characteristic of the existing methods for qualitative
analysis is an extensive use of heuristics and/or tuning parameters
and the absence of a well-defined global objective. For instance, the
wavelet-based method developed in Bakshi and Stephanopoulos
(1994) relies on a heuristic proposed by Witkin (1983) which deter-
mines the QR. The methods in Dash, Maurya, Venkatasubramanian,
and Rengaswamy (2004) and Charbonnier, Garcia-Beltan, Cadet,
and Gentil (2005) are based on piece-wise polynomial fitting.
They make use of recursive schemes for on-line updating of the
set of piece-wise polynomials. Because the optimal specification
of interval endpoints for the piece-wise polynomials is NP-hard,
locally optimal strategies based on lack-of-fit statistics are used.

0098-1354/$ – see front matter ©  2013 Elsevier Ltd. All rights reserved.
http://dx.doi.org/10.1016/j.compchemeng.2013.06.005

dx.doi.org/10.1016/j.compchemeng.2013.06.005
http://www.sciencedirect.com/science/journal/00981354
http://www.elsevier.com/locate/compchemeng
http://crossmark.crossref.org/dialog/?doi=10.1016/j.compchemeng.2013.06.005&domain=pdf
mailto:kris.villez@eawag.ch
dx.doi.org/10.1016/j.compchemeng.2013.06.005


K. Villez et al. / Computers and Chemical Engineering 58 (2013) 116– 134 117

List of acronyms and symbols

a, b left/right interval endpoint (scalar)
ai, bi interval endpoints or knot arguments (scalar)
cij, xij, yij element of matrix C/X/Y on row i, column j (scalar)
ci, xi, yi ith element of vector c/x/y (scalar)
c, x, y column vectors
e index of episodes (integer)
f(t) univariate function in t
f(k)(t) kth derivative with respect to t of function f
gq+j,k vector of linear coefficients to project the spline

basis coefficients, c, onto the piece-wise polynomial
basis coefficients of degree k in interval q + j

h, i, j, q, r index variables (integer)
k order of monomial or derivative (integer)
le, ue lower and upper limit for right episode endpoint

(scalar)
m number of interval endpoints or knots (integer)
n degree of polynomial or spline function (integer)
ne number of episodes (integer)
pk polynomial coefficient of order k (scalar)
se,k sign of derivative of order k in episode e (+1, 0, or

−1)
t function argument (scalar)
te,1 left episode endpoint (scalar)
te, te,2, ts right episode endpoint (scalar)
B&B Branch and Bound
C, X, Y matrices
DP Dynamic Program
F(y, c) objective function in y and c, convex in c
FL Lower bound
FOPT Global optimum objective function
FR Reduced upper bound
FU Upper bound
MAP  Maximum A posteriori Probability
NLP Non-Linear Program
QR Qualitative Representation
QS Qualitative Sequence
SCS Shape Constrained Spline
SCSDP1 Shape Constrained Spline Diagnosis Procedure 1
SCSDP2 Shape Constrained Spline Diagnosis Procedure 2
SDP Semi-Definite Program
SOC Second Order Cone
SOCP Second Order Cone Program
SSR Sum of Squared Residuals
A, D  Sets of argument values
CL, CU Set of spline coefficients for the lower/upper bound
T Set of feasible endpoints
�k Regularization parameter for derivative or order k
� Noise standard deviation

Furthermore, it is indicated in Villez (2007) that these methods
optimize the piece-wise polynomial representation to derive the
QR rather than optimizing the QR itself. The methods in Cao and
Rhinehart (1995) and Flehmig, Watzdorf, and Marquardt (1998)
are based on filters set up for the assessment of the sign of a sin-
gle derivative only. Joint analysis of the signs for more than one
derivative has not been considered in this case. Multivariate qual-
itative analysis of trends, i.e., in which a multivariate data series
is analyzed jointly, has only been considered so far in Flehmig
and Marquardt (2006). Note that all existing methods consider
a single explanatory variable only, which is time in all of the
reported applications. We  conclude this overview by stressing that
the development and application of suboptimal methods can be a

valid choice for on-line applications on grounds of computational
speed.

Our primary motivation for this study is to provide a provably
global optimal method for qualitative analysis. To this end, the
problem of qualitative analysis is formulated for the first time as
a shape constrained function fitting problem. Shape Constrained
Spline (SCS) fitting is a non-parametric estimation problem with
so called order restrictions on the spline function value and/or
its derivatives. Alternative non-parametric models include kernel
regression models and are almost exclusively related to monotonic-
ity constraints (Delecroix, Simioni, & Thomas-Agnan, 1996; Dette,
Neumeyer, & Pilz, 2006; Dette & Pilz, 2006; Hall, Huang, Gifford,
& Gijbels, 2001; Holmes & Heard, 2003; Lavine & Mockus, 1995;
Leitenstorfer & Tutz, 2007; Mammen, 1991; Meyer & Habtzghi,
2011; Robertson, Wright, & Dykstra, 1988). An exception is pro-
vided in Habtzghi and Datta (2012) in which other simple shapes
are also considered, namely convex, monotone convex, or concave-
convex. In Delecroix and Thomas-Agnan (2000) and Mammen,
Marron, Turlach, and Wand (2001) both spline- and kernel-based
approaches are discussed jointly.

A large fraction of the literature on SCS fitting deals with finding
the optimal fit of positive, monotone, or convex spline functions,
where optimality is defined as a least-squares or regularized objec-
tive function (Beliakov, 2000; Brunk, 1955; Dierckx, 1980; Fritsch,
1990; He & Shi, 1998; Kelly & Rice, 1990; Mammen & Thomas-
Agnan, 1999; Meyer, 2008; Mukerjee, 1988; Ramsay, 1988, 1998;
Tantiyaswasdikul & Woodroofe, 1994; Utreras, 1985; Wang & Li,
2008; Wegman & Wright, 1983; Wright & Wegman, 1980). More
complex monotonic convex and monotonic concave shapes are
applied by Elfving and Andersson (1988). In Hazelton and Turlach
(2011), any shape constraint can be applied as long as it can be
expressed in the form of a finite number of linear inequalities
in the spline coefficients. To make this possible, the order of the
spline is typically constrained to be equal or lower than two (lin-
ear) or three (quadratic). In this case, the feasible set of spline
functions can be represented by polyhedral cones. Specific algo-
rithms for such problems are provided in Dykstra (1983), Fraser
and Massam (1989) and Meyer (1999). Alternatively, it is pos-
sible to formulate overly constrained solutions to ensure shape
satisfaction of higher order splines. An approximate solution for
monotone cubic splines in Meyer (2008) is based on solving first
with a set of necessary but insufficient constraints which lead to
satisfaction of the shape constraints in the knots of the splines.
A subsequent interpolation procedure is used to obtain a spline
function which satisfies the shape constraints over the whole
function domain. In Turlach (2005), a more general method is pro-
posed for splines constrained to any sort of shape. It is based on
a two-step procedure in which violated constraints are identi-
fied and then mitigated by adding linear inequality and equality
constraints. Both approaches are suboptimal because the result-
ing spline function is overly constrained. In contrast, Wang and Li
(2008) recognize that sufficient and necessary conditions for mono-
tone cubic splines can be formulated as SOC constraints. The more
general idea that shape constraints on polynomials of any order
can be represented as Semi-Definiteness constraints is presented
in Nesterov (2000). SOC constraints are special instances of Semi-
Definiteness constraints which result when the shape constrained
polynomial is of third or lower order. As a result, spline functions
up to 4th (cubic), 5th (quartic), and 6th (quintic) order with posi-
tive, monotone, and convex shape constraints, respectively, can be
fitted efficiently with Interior Point optimization algorithms (Papp,
2011).

A few studies provide methods for more complex shape con-
straints (Hazelton & Turlach, 2011; Papp, 2011; Turlach, 2005).
However, the provided methods assume that the intervals over
which shape constraints are applied are known in advance. As a
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