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a b s t r a c t

Based on the linear shallow water approximation, longitudinal oscillations in a rectangular harbor with a
hyperbolic-cosine squared bottom induced by incident perpendicular waves are analytically investi-
gated, which could be described by combining the associated Legendre functions of the first and second
kinds. The effects of topographic parameters on the resonant spectrum and response are examined in
detail. When the width of the harbor is of the same order magnitude as wavelengths, transverse
oscillations may exist due to the wave refraction. Analytic solutions for transverse oscillations within a
harbor of hyperbolic-cosine squared bottom are derived. These oscillations are typically standing edge
waves. The transverse eigenfrequency is found to be related not only to the width of the harbor, but also
to the varying water depth parameters.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Better understanding of wave trapping and oscillations in bays
and harbors is of importance to many practical applications. These
oscillations may be induced by tsunamis, infragravity waves, atmo-
spheric fluctuations and variable currents traveling into a semi-
enclosed domain, e.g. bays and harbors (Bellotti et al., 2012; De Jong
and Battjes, 2004; Fabrikant, 1995; Okihiro and Guza, 1996). The
oscillations may cause unacceptable vessel movements, affect normal
operation of docks, and generate excessive mooring forces that may
break the mooring lines. Rabinovich (2010) reviewed recent advances
in understanding and modeling of seiches and harbor oscillations. In
order to reduce the disturbance to normal harbor operation and
minimize the possible damages, a further research effort is necessary
to enhance our current knowledge for this type of wave amplifica-
tion and its excitation mechanisms and thus improve predictive
capability.

Numerical modeling has provided an effective way to repro-
duce such a phenomenon and identify the eigenvalues of oscilla-
tions, through simulating waves propagating from offshore and
subsequently being amplified inside a bay/harbor. Researchers
have developed a variety of numerical models based on the

mild-slope equations to predict wave oscillations in harbors
induced by different offshore wave conditions (Bellotti, 2007;
Maa et al., 2011; Panchang et al., 2000). These linear models are
useful for predicting short wave disturbances in harbors and
identifying harbor resonance periods and long wave amplifica-
tion factors. Furthermore, this type of models is generally compu-
tationally efficient and thus suitable for applications to large
computational domains; this facilitates explicit account of possible
effects of ambient wave transformation outside the harbor in a
larger region. However, these models cannot reliably predict long-
period oscillations induced by incident short waves or higher
harmonics generated from nonlinear interactions. Boussinesq-type
models provide a more reliable tool for simulating such nonlinear
hydrodynamic problems including the nonlinear generation of
long waves by groups of short waves propagating from deep to
shallow water, diffraction of both short- and long-period waves
into a harbor, and resonant amplification of long waves inside a
harbor. They represent a group of models based on extended and
higher-order Boussinesq equations that are solved using the finite
difference method on structured Cartesian (Shi et al., 2012; Zou
and Fang, 2008) or curvilinear meshes (Shi et al., 2001) or the
finite element method on triangular or quadrilateral grids (Losada
et al., 2008; Walkley and Berzins, 2002). Most of these numerical
models are capable of capturing the major characteristics of the
resonant response from a given geometry and hence are useful
for designing plan shape of harbors. However, designing a new
geometry generally involves a large number of variables, including
the size of the basin and the width of the entrance, among others.
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The entire design process may therefore require numerous com-
putationally demanding model runs, which may not be feasible in
practice. Theoretical analysis provides an alternative means for
investigating the resonant mechanism being influenced particu-
larly by the geometry parameters, topography effects, generation
forcing, etc.

Miles and Munk (1961) first considered the enhancement in
harbor surging in a rectangular harbor with narrow openings,
matching the normal velocity and water surface elevation at the
entrance with a scattering theory. Lee (1971) introduced the
‘arbitrary-shape harbor’ theory by applying the Weber solution
of the Helmholtz equation in the regions both inside and outside
the harbor, with the final analytical solution obtained by matching
the wave amplitudes and their normal derivatives at the entrance.
Mei and Ünlüata (1976) derived the analytical solutions of reso-
nance for a harbor with two coupled rectangular basins subjected
to periodic incident waves. Based on the multiple-scales perturba-
tion method, Wu and Liu (1990) obtained the analytical solutions
for the second-order low-frequency oscillations inside a rectan-
gular harbor excited by incident wave groups. Yu (1996) examined
parametrically the dissipative effects of a river channel on bay
oscillations under resonant states. Fabrikant (1995) reported
analytical solutions for harbor oscillations as a result of linear
instability in a system featured by coupled surface-wave resonator
and shear flow. Although these analytical studies have been
restricted to the wave-induced oscillations in simple-geometry
harbors with horizontal bottom, the general features of resonance
have been considered and represented.

Harbor resonance is also strongly dependent on the topogra-
phy. But most of the previous theoretical analysis only pays
attention to the change in height as the wave shoals (Mattioli,
1978; Zelt and Raichlen, 1990). Wang et al. (2011a) presented new
formulations for describing longitudinal oscillations inside a
harbor with constant slope and further demonstrated that differ-
ent transverse oscillation modes may exist due to the wave
refraction. They further proved that these transverse oscillations
can be induced by normal-incident waves due to instability and
seafloor movements in the harbor (Wang et al., 2011b, 2013).

The beach has been represented not only by a straight slope,
but also by exponential profiles (Buchwald and Adams, 1968;
Clarke, 1973). The present study will examine oscillations within
a harbor of a convex hyperbolic-cosine squared bottom, where the
profile only varies in offshore direction and it can be described as
h¼h0 cosh2(λx). By appropriately setting values of the constants,
this model can also represent actual beaches, as shown in Fig. 1.

There are assumed initially only longitudinal oscillations within
a rectangular harbor of a hyperbolic-cosine squared bottom
and their formulary descriptions are given in Section 2. When
the width of a harbor is of the same order magnitude as the

wavelength, transverse oscillations would be present, and their
analytic formulations are given in Section 3. Conclusions are
drawn in Section 4.

2. Longitudinal oscillations

2.1. Formulation and solution method

Fig. 2 illustrates an idealized rectangular harbor with a
hyperbolic-cosine squared bottom, located from x¼0 to x¼L. The
x axis is normal to the backwall and the y axis is parallel to the
backwall with the z axis vertically downwards from the still water
level. The width of the harbor is 2b (from y¼b to y¼b), which is
assumed to be much smaller than the wavelength of the incident
waves so that only longitudinal oscillations occur. Assuming
horizontal seafloor in the open ocean, the water depth is thus
given by

hðx; yÞ ¼ h0 cos h2ðλxÞ 0rxrL; jyjrb

h1 x4L

(
ð1Þ

where λ (m�1) is a parameter determining the shape of the
hyperbolic-cosine squared, and

h1 ¼ h0 cos h2ðλLÞ ð2Þ

In most harbors, water is relatively shallow compared with the
oscillation wavelength. So the motion of water particles is pre-
dominantly horizontal and the vertical variation is weak, which
satisfies the assumptions of the shallow water equations.

According to the linear shallow-water approximation, the sur-
face elevation η(x, y, t) satisfies the following equation:

ηtt�g∇ðh∇ηÞ ¼ 0 ð3Þ

in which ∇¼(∂/∂x, ∂/∂y), g is the acceleration due to gravity and t is
the time.

The water surface displacement in the harbor may be written as

ηLI ðx; tÞ ¼ ζLI ðxÞexpðiωtÞ ð4Þ

where the subscript I indicates ‘inside the harbor’, the superscript L
represents longitudinal effects, and i¼(–1)1/2. Eqs. (1), (3) and (4)
are combined to yield

d2ζLI
dx2

þ2λ tan hðλxÞdζ
L
I

dx
þ ω2

gh0
sech2ðλxÞζLI ¼ 0 ð5Þ
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Fig. 1. Comparison of the bottom topography of the east beach near Marina di
Carrara, and the constants for the theoretical model are h0¼�5.5 m and
λ¼0.0008 m�1. The topographic data are extracted from the paper of Bellotti and
Franco (2011).

Fig. 2. Definition sketch of the rectangular harbor with a hyperbolic-cosine
squared bottom. (a) plan view and (b) elevation view.
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