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1. Introduction

Finding the exact solutions of nonlinear evolution equations
(NLEEs) plays an important role in the study of many physical
phenomena in various fields such as fluid mechanics, solid-state
physics, plasma physics, chemical physics, optical fibre and geo-
chemistry. Thus, it is important to investigate the exact explicit
solutions of NLEEs (Ahmed and Biswas, 2013; Biswas, 2013; Biswas
et al.,, 2009, 2011; Ebadi et al., 2012, 2013; Krishnan et al., 2012;
Razborova et al., 2013, 2014; Triki et al., 2012).

The first integral method was first proposed in Feng (2002)
for obtaining the exact 1-soliton solutions of the Burger-KdV equa-
tion which is based on the ring theory of commutative algebra. The
basic idea of this method is to construct a first integral with
polynomial coefficients of an explicit form to an equivalent autono-
mous planar system by using the division theorem. Recently, this
useful method is widely used in many papers such as in (Aslan, 2011,
2012; Bekir and Unsal, 2012; Jafari et al., 2012; Lu, 2012; Mirzazadeh
and Eslami, 2012; Eslami and Mirzazadeh, 2013; Tascan et al., 2009)
and the references therein.

In this paper, we will consider the three different forms of
Boussinesq equations (Wazwaz, 2012) as follows:

U — (6U Uy + Upex)y = O, 1)
Ut — Uxx — (6112 Uy +Uyt)y =0, 2)
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Ut — Uxt — (6u2ux +Uxe)y = 0. (3)

Egs. (1)-(3) model the study of shallow water waves in lakes and
ocean beaches. More details are presented in Wazwaz (2012).

Also, we will consider the following (1 + 1)-dimensional
nonlinear Boussinesq equations:

Ur+aq Vx +aautly =0,

Ve+a3(Vi)y + Qallyx = 0. 4)

This coupled Boussinesq equation arises in shallow water waves
for two layered fluid flow. This situation occurs when there is an
accidental oil spill from a ship which results in a layer of oil
floating above the layer of water. More details are presented in
Jawad et al. (2013).

In this paper, we would like to obtain the exact 1-soliton
solutions of Egs. (1)-(4) by using the first integral method.

2. First integral method

Tascan et al. (2009) summarized the main steps for using the
first integral method as follows:
Step 1. Suppose that a nonlinear PDE

P(u, ug, Uy, Uy, Uxe, Uxx, ...) =0 )
can be converted to an ODE
QWU, —wU', kU, 0*U", —kwU", k*U",...) =0, (6)

using a traveling wave variable u(x,t)=U(z), z=kx—wt, where
the prime denotes the derivation with respect to z. If all terms
contain derivatives, then Eq. (6) is integrated where integration
constants are considered zeros.


www.sciencedirect.com/science/journal/00298018
www.elsevier.com/locate/oceaneng
http://dx.doi.org/10.1016/j.oceaneng.2014.02.026
http://dx.doi.org/10.1016/j.oceaneng.2014.02.026
http://dx.doi.org/10.1016/j.oceaneng.2014.02.026
http://crossmark.crossref.org/dialog/?doi=10.1016/j.oceaneng.2014.02.026&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.oceaneng.2014.02.026&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.oceaneng.2014.02.026&domain=pdf
mailto:mostafa.eslami@umz.ac.ir
mailto:mirzazadehs2@guilan.ac.ir
http://dx.doi.org/10.1016/j.oceaneng.2014.02.026

134 M. Eslami, M. Mirzazadeh / Ocean Engineering 83 (2014) 133-137

Step 2. Suppose that the solution of ODE (6) can be written as
follows:

ux, t) =U@2) =f(2). (7)
Step 3. We introduce a new independent variable

X@=f@), Y@)=f,2), 3)

which leads a system of

X:2)=Y(2),

Y2(2) =F(X(2),Y(2)). C)

Step 4. According to the qualitative theory of ordinary differ-
ential equations (Ding and Li, 1996), if we can find the integrals to
(9) under the same conditions, then the general solutions to (9)
can be solved directly. However, in general, it is really difficult for
us to realize this even for one first integral, because for a given
plane autonomous system, there is neither a systematic theory
that can tell us how to find its first integrals, nor a logical way for
telling us what these first integrals are. We shall apply the Division
Theorem to obtain one first integral to (9) which reduces (6) to a
first-order integrable ordinary differential equation. An exact
solution to (5) is then obtained by solving this equation. Now, let
us recall the Division Theorem:

Division Theorem. Suppose that P(w,v) and Q(w,v) are poly-
nomials in C[w,2]; and P(w,v) is irreducible in C[w,7]. If Q(w,v)
vanishes at all zero points of P(w, v), then there exists a polynomial
G(w,v) in C[w, 7] such that

Q(w,v) =P(w,v)G(w, ).

3. The first Boussinesq-like equation

We first study the first Boussinesq-like equation given by
Usr — (B2 Uy + Uy )y = 0. (10)
By making the transformation
ux,t)=U(z), z=kx—wt an
Eq. (10) becomes
@*U"(2)— k(6kU*(2)U'(2) + K U" (2)) = 0. (12)

Integrating Eq. (12) twice and setting the integration constants to
zero yield

@*U(z) - 2K*U%(2) - k*U"(2) = 0. (13)

Introducing new variables X = U(z) and Y = U’(z) converts Eq. (13)
into a system of ODEs

X@=Y),
2
Y'(2) = %X(z) fk%x3 @. (14

Now, the Division Theorem is employed to seek the first integral to
Eq. (14). Suppose that X(z) and Y(z) are nontrivial solutions of
Egs. (14) and

m .
QX.Y)= ¥ ai(X)Y'=0
i=o0

is an irreducible polynomial in the complex domain C[X,Y] such
that

QX@. YD = 3 a(X@)Y'e)=0. as)

where a;(X) (i=0,1,....,m) are polynomials of X and a;,(X)# 0.
Due to the Division Theorem, there exists a polynomial

gX)+h(X)Y in the complex domain C[X, Y] such that

dQ _dQdx dQdy
dz ~dXdz dY dz
= EX)+hX)Y) T a0oY. (16)

Suppose that m=1, by equating the coefficients of Y! (i=2,1,0) on
both sides of Eq. (16), we have

a1(X) = h(X)a1(X), a7)
a)(X) = 21 (X)+ heO)@(X), (18)
a1<X)[ X—I—Xﬂ — g(¥)a0(X). (19)

Since a;(X) (i=0,1) are polynomials, from (17) we deduce that
a;(X) is constant and h(X)=0. For simplicity, take a;(X)=1.
Balancing the degrees of g(X) and ag(X), we conclude that
deg(g(X)) = 1 only. Suppose that g(X) = A1 X+ By, then we find that

ao(X) = Ao +BoX +1 A1 X2, (20)

where Ay is an arbitrary integration constant.

Substituting ap(X) and g(X) into (19) and setting all the
coefficients of powers X to be zero, we obtain a system of
nonlinear algebraic equations and by solving it, we obtain

iw? 2i
By =0, A0=—%, 1= 21)
Bo=0. A= a -2 22)
0=0. fo=_13 A=
where k and w are arbitrary constants.
Using the conditions (21) and (22) in Eq. (15), we obtain
Y2)F (?——Xz(z)) =0. (23)

Combining these equations with (14), we obtain the exact solu-
tions to (13) and then the exact solutions to Eq. (10) which can be
written as

uia(x,t) = 7kftanh<\/_ 5(kx— wt+zo)> 24)
and
U3 4(x, )= i7COth<z sz(kx a)t+zo)> (25)

where zq is an arbitrary constant.

4. The second Boussinesq-like equation

We next study the second Boussinesq-like equation given by
Ut — Uxx — (6u2ux +uxe)y =0. (26)

The wave transformation u(x,t)=U(z), z=
(26) to the following ODE:

kx—wt, reduces Eq.

@* —k*U"(2) — k(6kU*(2)U'(2) + ka*U"(2)) = 0. (27)

Integrating Eq. (27) twice and setting the integration constants to
zero, we get

(@2 —k*U(2)— 2k° U (2) — K> 0?U"(2) = 0. (28)
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