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a b s t r a c t

In this paper, we study a variety of Boussinesq-like equations. The first integral method is applied to
obtain exact 1-soliton solutions for each equation. Exact 1-soliton solutions of these equations are found.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Finding the exact solutions of nonlinear evolution equations
(NLEEs) plays an important role in the study of many physical
phenomena in various fields such as fluid mechanics, solid-state
physics, plasma physics, chemical physics, optical fibre and geo-
chemistry. Thus, it is important to investigate the exact explicit
solutions of NLEEs (Ahmed and Biswas, 2013; Biswas, 2013; Biswas
et al., 2009, 2011; Ebadi et al., 2012, 2013; Krishnan et al., 2012;
Razborova et al., 2013, 2014; Triki et al., 2012).

The first integral method was first proposed in Feng (2002)
for obtaining the exact 1-soliton solutions of the Burger-KdV equa-
tion which is based on the ring theory of commutative algebra. The
basic idea of this method is to construct a first integral with
polynomial coefficients of an explicit form to an equivalent autono-
mous planar system by using the division theorem. Recently, this
useful method is widely used in many papers such as in (Aslan, 2011,
2012; Bekir and Unsal, 2012; Jafari et al., 2012; Lu, 2012; Mirzazadeh
and Eslami, 2012; Eslami and Mirzazadeh, 2013; Tascan et al., 2009)
and the references therein.

In this paper, we will consider the three different forms of
Boussinesq equations (Wazwaz, 2012) as follows:

utt�ð6u2uxþuxxxÞx ¼ 0; ð1Þ

utt�uxx�ð6u2uxþuxttÞx ¼ 0; ð2Þ

utt�uxt�ð6u2uxþuxxtÞx ¼ 0: ð3Þ
Eqs. (1)–(3) model the study of shallow water waves in lakes and
ocean beaches. More details are presented in Wazwaz (2012).

Also, we will consider the following (1 þ 1)-dimensional
nonlinear Boussinesq equations:

utþα1vxþα2uux ¼ 0;

vtþα3ðvuÞxþα4uxxx ¼ 0: ð4Þ
This coupled Boussinesq equation arises in shallow water waves
for two layered fluid flow. This situation occurs when there is an
accidental oil spill from a ship which results in a layer of oil
floating above the layer of water. More details are presented in
Jawad et al. (2013).

In this paper, we would like to obtain the exact 1-soliton
solutions of Eqs. (1)–(4) by using the first integral method.

2. First integral method

Tascan et al. (2009) summarized the main steps for using the
first integral method as follows:

Step 1. Suppose that a nonlinear PDE

Pðu;ut ;ux;utt ;uxt ;uxx;…Þ ¼ 0 ð5Þ
can be converted to an ODE

Q ðU; �ωU0; kU0;ω2U″; �kωU″; k2U″;…Þ ¼ 0; ð6Þ
using a traveling wave variable uðx; tÞ ¼UðzÞ; z¼ kx�ωt, where
the prime denotes the derivation with respect to z. If all terms
contain derivatives, then Eq. (6) is integrated where integration
constants are considered zeros.
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Step 2. Suppose that the solution of ODE (6) can be written as
follows:

uðx; tÞ ¼ UðzÞ ¼ f ðzÞ: ð7Þ
Step 3. We introduce a new independent variable

XðzÞ ¼ f ðzÞ; YðzÞ ¼ f zðzÞ; ð8Þ
which leads a system of

XzðzÞ ¼ YðzÞ;

YzðzÞ ¼ FðXðzÞ;YðzÞÞ: ð9Þ
Step 4. According to the qualitative theory of ordinary differ-

ential equations (Ding and Li, 1996), if we can find the integrals to
(9) under the same conditions, then the general solutions to (9)
can be solved directly. However, in general, it is really difficult for
us to realize this even for one first integral, because for a given
plane autonomous system, there is neither a systematic theory
that can tell us how to find its first integrals, nor a logical way for
telling us what these first integrals are. We shall apply the Division
Theorem to obtain one first integral to (9) which reduces (6) to a
first-order integrable ordinary differential equation. An exact
solution to (5) is then obtained by solving this equation. Now, let
us recall the Division Theorem:

Division Theorem. Suppose that Pðw;νÞ and Q ðw;νÞ are poly-
nomials in C½w;ν�; and Pðw;νÞ is irreducible in C½w;ν�. If Q ðw;νÞ
vanishes at all zero points of Pðw;νÞ, then there exists a polynomial
Gðw;νÞ in C½w;ν� such that

Q ðw;νÞ ¼ Pðw;νÞGðw;νÞ:

3. The first Boussinesq-like equation

We first study the first Boussinesq-like equation given by

utt�ð6u2uxþuxxxÞx ¼ 0: ð10Þ
By making the transformation

uðx; tÞ ¼ UðzÞ; z¼ kx�ωt ð11Þ
Eq. (10) becomes

ω2U″ðzÞ�kð6kU2ðzÞU0ðzÞþk3U‴ðzÞÞ0 ¼ 0: ð12Þ
Integrating Eq. (12) twice and setting the integration constants to
zero yield

ω2UðzÞ�2k2U3ðzÞ�k4U″ðzÞ ¼ 0: ð13Þ
Introducing new variables X ¼UðzÞ and Y ¼ U0ðzÞ converts Eq. (13)
into a system of ODEs

X0ðzÞ ¼ YðzÞ;

Y 0ðzÞ ¼ω2

k4
XðzÞ� 2

k2
X3ðzÞ: ð14Þ

Now, the Division Theorem is employed to seek the first integral to
Eq. (14). Suppose that X(z) and Y(z) are nontrivial solutions of
Eqs. (14) and

Q ðX;YÞ ¼ ∑
m

i ¼ 0
aiðXÞYi ¼ 0

is an irreducible polynomial in the complex domain C½X;Y � such
that

Q ðXðzÞ;YðzÞÞ ¼ ∑
m

i ¼ 0
aiðXðzÞÞYiðzÞ ¼ 0; ð15Þ

where aiðXÞ ði¼ 0;1;…:;mÞ are polynomials of X and amðXÞa0:
Due to the Division Theorem, there exists a polynomial

gðXÞþhðXÞY in the complex domain C½X;Y� such that

dQ
dz

¼ dQ
dX

dX
dz

þdQ
dY

dY
dz

¼ ðgðXÞþhðXÞYÞ ∑
m

i ¼ 0
aiðXÞYi: ð16Þ

Suppose that m¼1, by equating the coefficients of Yi ði¼ 2;1;0Þ on
both sides of Eq. (16), we have

a01ðXÞ ¼ hðXÞa1ðXÞ; ð17Þ

a00ðXÞ ¼ gðXÞa1ðXÞþhðXÞa0ðXÞ; ð18Þ

a1ðXÞ
ω2

k4
X� 2

k2
X3

� �
¼ gðXÞa0ðXÞ: ð19Þ

Since aiðXÞ ði¼ 0;1Þ are polynomials, from (17) we deduce that
a1ðXÞ is constant and hðXÞ ¼ 0: For simplicity, take a1ðXÞ ¼ 1.
Balancing the degrees of g(X) and a0ðXÞ, we conclude that
degðgðXÞÞ ¼ 1 only. Suppose that gðXÞ ¼ A1XþB0, then we find that

a0ðXÞ ¼ A0þB0Xþ1
2 A1X

2; ð20Þ

where A0 is an arbitrary integration constant.
Substituting a0ðXÞ and g(X) into (19) and setting all the

coefficients of powers X to be zero, we obtain a system of
nonlinear algebraic equations and by solving it, we obtain

B0 ¼ 0; A0 ¼ � iω2

2k3
; A1 ¼

2i
k
; ð21Þ

B0 ¼ 0; A0 ¼
iω2

2k3
; A1 ¼ �2i

k
; ð22Þ

where k and ω are arbitrary constants.
Using the conditions (21) and (22) in Eq. (15), we obtain

YðzÞ8 iω2

2k3
� i
k
X2ðzÞ

� �
¼ 0: ð23Þ

Combining these equations with (14), we obtain the exact solu-
tions to (13) and then the exact solutions to Eq. (10) which can be
written as

u1;2ðx; tÞ ¼ 7
ω

k
ffiffiffi
2

p tanh
ω

i
ffiffiffi
2

p
k2
ðkx�ωtþz0Þ

� �
; ð24Þ

and

u3;4ðx; tÞ ¼ 7
ω

k
ffiffiffi
2

p coth
ω

i
ffiffiffi
2

p
k2
ðkx�ωtþz0Þ

� �
; ð25Þ

where z0 is an arbitrary constant.

4. The second Boussinesq-like equation

We next study the second Boussinesq-like equation given by

utt�uxx�ð6u2uxþuxttÞx ¼ 0: ð26Þ
The wave transformation uðx; tÞ ¼UðzÞ; z¼ kx�ωt, reduces Eq.
(26) to the following ODE:

ðω2�k2ÞU″ðzÞ�kð6kU2ðzÞU0ðzÞþkω2U‴ðzÞÞ0 ¼ 0: ð27Þ
Integrating Eq. (27) twice and setting the integration constants to
zero, we get

ðω2�k2ÞUðzÞ�2k2U3ðzÞ�k2ω2U″ðzÞ ¼ 0: ð28Þ
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