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a  b  s  t  r  a  c  t

In this  paper,  convection-diffusion-reaction  models  with  nonlinear  reaction  mechanisms,  which  are  typ-
ical problems  of chemical  systems,  are  studied  by  using  the  upwind  symmetric  interior  penalty  Galerkin
(SIPG)  method.  The  local  spurious  oscillations  are  minimized  by  adding  an  artificial  viscosity  diffusion
term  to  the original  equations.  A discontinuity  sensor  is  used  to detect  the  layers  where  unphysical  oscil-
lations  occur.  Finally,  the  proposed  method  is  tested  on  various  single-  and  multi-component  problems.

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Unsteady nonlinear convection diffusion reaction problems are
often studied in many engineering problems such as fluid dynamics
problems in the presence of body forces, electrochemical interac-
tion flows and chemically reactive flows (Helmig, 1997; Warnatz,
Maas, & Dibble, 2009). In this paper, we consider the following non-
linear system of coupled diffusion-convection-reaction equations
as a model problem for our investigations:

∂tui − �i�ui + �i · ∇ui + ˛iui + ri(u) = fi in �i, (1.1a)

ui = gD
i on �D

i , (1.1b)

�
∂ui

∂n
= gN

i on �N
i , (1.1c)

ui( · , t0) = u0
i in �i (1.1d)

for i = 1, · · · , m . Here, u = u(x, t) with u = (u1, · · · , um)T denotes
the vector of unknowns where �i is a bounded, convex domain
in R

2 with boundary �i = �D
i

∪ �N
i

, �D
i

∩ �N
i

= ∅ and t ∈ (0, T]
for some T > 0. The source functions and boundary conditions,
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i.e., Dirichlet boundary condition (1.1b) and Neumann bound-
ary condition (1.1c), are defined such as fi ∈ L2(0, T ; L2(�)), gD

i
∈

L2(0,  T; H3/2(�D
i

)) and gN
i

∈ L2(0,  T; H1/2(�N
i

)), respectively. More-
over, the diffusion coefficients �i are small positive numbers such
that 0 < �i � 1, ˛i ∈ L∞(�)  are the reaction coefficients and ˇi ∈
L∞(0,  T; (W1,∞(�))

2
) are the velocity fields (see Adams, 1975 for

details). The initial conditions are also defined such that u0
i

∈ H1(�).
We  have the following assumptions for the nonlinear reaction
parameters ri(u):

ri(u) ∈ C1(R+
0 ), ri(0) = 0, r′

i(s)≥0 ∀s≥0, s ∈ R  (1.2)

to satisfy the boundedness of r′
i
(u) in terms of above compact inter-

vals of u. In large chemical systems the reaction terms ri(u) are
assumed to be expressions which are products of some function of
the concentrations of the chemical component and an exponential
function of the temperature, called Arrhenius kinetics expression.
As an example, the rate of conversion of u1 and u2 in the reaction

u1 + u2 → products

can be expressed as

k0ua
1ub

2e−(E/(RT)),

where u1 and u2 are the concentrations of reactants, a and b are the
orders of reaction, k0 is the preexponential factor, E is the activation
energy, R is the universal gas constant and T is the absolute reaction
temperature.

Problems of the form (1.1) are strongly coupled such that
inaccuracies in one unknown directly affect all other unknowns.
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Prediction of these unknowns is very important for the safe and
economical operation of biochemical and chemical engineering
processes. Typically, in (1.1) the size of the diffusion parameter �
is smaller compared to the size of velocity field ˇ. Then, such a
convection diffusion system is called convection-dominated.

For convection-dominated problems, especially in the presence
of boundary and/or interior layers, the standard finite element
methods may  result in spurious oscillations causing in turn a severe
loss of accuracy and stability. To avoid these oscillations, some sta-
bilization techniques are applied such as the streamline upwind
Galerkin method (SUPG) for single linear convection dominated
equations (John & Schmeyer, 2008). Nevertheless, spurious local-
ized oscillations, in particular in cross-wind direction, may  still
be present. Recently, higher order discontinuous Galerkin (DG)
methods have become popular for convection dominated problems
(Cockburn, 1998; Cockburn & Shu, 2001) since DG methods possess
inherent stability at discontinuities. However, the stability condi-
tion sometimes is not satisfied by the DG space discretization itself
at discontinuities and therefore, numerical solutions might suffer
from unphysical oscillations near the discontinuities.

The most straightforward approach consists in avoiding the
presence of sharp gradients with some non-linear projection oper-
ators, namely slope limiters, introduced in Cockburn, Hou, and
Shu (1990); Cockburn and Shu (1989). Nevertheless, these lim-
iters are not suitable for higher-order reconstructions, i.e., they
drastically reduce the order of the approximation to linear or con-
stant. Alternatively, a high-order reconstruction scheme, known as
weighted non-oscillatory approach is used in Qiu and Shu (2005)
as a slope limiter. However, it requires structured grids with a very
wide stencil and therefore the compactness of DG may  become
less attractive. In addition, the extension to multiple dimensions
is still an open issue for both slope limiters. Another classical way
to avoid spurious oscillations is the artificial viscosity proposed
in von Neumann and Richtmyer (1950), which is used with in
many numerical techniques, i.e., finite difference methods (Lapidus,
1967), SUPG discretization (John & Schmeyer, 2008) for linear
convection dominated problems and in Bause (2010); Bause and
Schwegler (2012) for nonlinear convection dominated problems.
Within the DG framework, it is mostly used for Euler equations
(Persson & Peraire, 2006) as an alternative to slope limiters.

In this paper, we solve the convection dominated problems with
various nonlinear reaction terms by using the upwind symmet-
ric interior penalty Galerkin (SIPG) method. If necessary, we  use a
shock-capturing method proposed in Persson and Peraire (2006)
based on the element size and the polynomial degree in order to
prevent unphysical oscillations. It is used in conjunction with a
discontinuity detection strategy.

The rest of the paper is organized as follows: In the next section
we introduce the model problem as scalar convection dominated
reaction-diffusion equation with nonlinear reaction term. Section
3 specifies the upwind SIPG discretization in space with shock-
capturing and time discretization. In the final section we  present
numerical results that illustrate the performance of discontinuous
Galerkin approximation with shock-capturing.

2. Scalar equation as model problem

We  use the following scalar equation as a model problem

∂tu − ��u  + � · ∇u + ˛u + r(u) = f in �,  (2.1)

equipped with appropriate initial and boundary conditions, i.e.,
Dirichlet and Neumann boundary conditions, to make the notation
easier for the readers. Let us first consider the weak formulation of

the state equation (2.1). The state space and the space of the test
functions are

U = {u ∈ H1(�) : u = gD on �D} and V = H1
0(�),

respectively. Then, it is well known that the weak formulation of
the state equation (2.1) is such that Elman, Silvester, and Wathen
(2005)

(∂tu, v) + a(u, v) +
∫

�

r(u)v dx = l(v), ∀v ∈ V,

where

a(u, v) =
∫

�

(�∇u · ∇v +  ̌ · ∇uv + ˛uv) dx,

l(v) =
∫

�

fv dx +
∫

�N

gNv ds.

When shock-capturing is applied, we add an artificial viscos-
ity (∇ · (� ∇ u)) to the weak formulation of the problem (2.1). It is
an unphysical diffusion term whose sole purpose is to damp out
high frequency components of the solution encountered wherever
Gibbs phenomenas are present. Then, the weak formulation with
the artificial viscosity is given by

(∂tu, v) + a(u, v) +
∫

�

r(u)v dx +
∫

�

∇ · (�∇u)v dx = l(v), ∀v ∈ V,

where � is the amount of viscosity. The viscosity parameter � is
chosen as a function of the mesh size and order of approximating
polynomials. It will be described in Section 3.2 in more details.

3. Discretization scheme

3.1. DG discretization in space

The DG discretization here is based on the SIPG discretization
for the diffusion and the upwind discretization for the convection.
The same discretization is used, e.g., in Houston, Schwab, and Süli
(2002); Schötzau and Zhu (2009) for scalar linear convection dif-
fusion equations. In this paper, we follow the notation in Schötzau
and Zhu (2009).

Let {Th}h be a family of shape regular meshes such that � =
∪K∈Th

K , Ki∩ Kj = ∅ for Ki, Kj ∈ Th, i /= j. The diameter of an element K
and the length of an edge E are denoted by hK and hE, respectively.

For an integer � and K ∈ Th let P
�(K) be the set of all polynomials

on K of degree at most �. We  define the discrete state and test spaces
to be

Vh = Uh =
{

u ∈ L2(�) : u|K ∈ P
�(K) ∀K ∈ Th

}
. (3.1)

Note that since discontinuous Galerkin methods impose bound-
ary conditions weakly, the space Uh of discrete states and the space
of test functions Vh are identical.

We split the set of all edges Eh into the set E0
h of interior edges,

the set ED
h of Dirichlet boundary edges and the set EN

h of Neumann

boundary edges so that Eh = E∂
h ∪ E0

h with E∂
h = ED

h ∪ EN
h . Let n denote

the unit outward normal to ∂�.  We  define the inflow boundary

�− =
{

x ∈ ∂� :  ̌ · n(x) < 0
}

,

and the outflow boundary �+ = ∂� \ �−. The boundary edges are
decomposed into edges E−

h
=

{
E ∈ E∂

h : E ⊂ �−}
that correspond to

inflow boundary and edges E+
h

= E∂
h \ E−

h
that correspond to outflow

boundary.
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