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a b s t r a c t

This paper establishes a methodology for analyzing the dynamics of a wave-induced impact model, with
emphasis on the modeling of float-over installations. The time domain model described by the Cummins
equation provides an attractive way of analyzing the dynamics of marine structures with nonlinear
effects. By replacing the time-consuming convolution terms, the resulting model is very efficient in
dealing with nonlinear problems. The established time domain model is applied to investigate Leg
Mating Unit (LMU) impacts during a float-over operation by considering the heaving motions of the
whole system. Both a one-body system (considering that barge and deck move as one rigid body) and a
two-body system (barge and deck moving separately) are considered in this paper. The techniques of
impact maps, Poincaré maps, bifurcation diagrams and phase portraits are used to investigate the motion
characteristics of the barge-deck system undergoing vertical impacts with the substructure.

& 2013 Published by Elsevier Ltd.

1. Introduction

Marine operations generally involve nonlinearities such as a
nonlinear mooring system, wave-induced impacts during a float-
over installation, and viscous forces. Due to these nonlinearities,
the dynamics of marine structures may exhibit sub-harmonic
motion and chaotic motion, under environmental loads. One
typical example is the dynamics of an articulated tower, that has
been modeled as a forced bilinear oscillator with a discontinuity in
the stiffness of the system due to slackening of the mooring cables,
see, for example, Thompson et al. (1983, 1984) and Gottlieb et al.
(1992). Another example is Virgin and Bishop's (1988) investiga-
tion of the complex dynamics of a floating semi-submersible with
nonlinear mooring system in the time domain, based on a non-
linear oscillator model with a constant damping for varying
periods. They analyzed the phenomena of period-doubling bifur-
cations leading to chaos. However, the effects of the frequency
dependent radiation damping were not well addressed in any of
these time domain models, since only a constant damping term
was used.

Another typical nonlinear marine system is the model of wave-
induced impact arising in the installation of an offshore platform
by the float-over method. This method is gaining popularity for

installing a large deck onto an offshore platform, due to its
relatively lower operational cost and higher installation capacity
(Tahar et al., 2006). By this method, after being constructed at the
shipyard the deck is loaded onto a transportation barge supported
on the Deck Support Frame (DSF) using Deck Support Units (DSUs),
and then towed to the installation site. The deck is then trans-
ferred onto the pre-installed substructure by controlling the
ballasting of the barge when the prevailing sea state is suitable.
In the load transfer stage, when the system is excited by waves,
the mating cones attached on the deck legs will make intermittent
impact with the receptors at the top of the substructure legs.
These impact loads are dissipated by the Leg Mating Units (LMUs)
that are pre-installed within the receptors. In order to ensure an
efficient and safe deck installation, it is critical to predict the
resulting forces and dynamics of the barge-deck system with high
confidence.

The nonlinear dynamics of wave-induced LMU impacts cannot
be evaluated by the conventional frequency domain model based
on a linear potential flow approach (Chen et al., 2012). Thus, time
domain modeling of the wave-induced LMU impacts is pursued
here. The Cummins (1962) equation provides an attractive way of
analyzing the dynamics of marine structures in the time domain.
The equation leads to a linear time invariant framework relating the
motion of the structure to the wave excitations on it. By replacing
the time-consuming convolution term with a state-space model,
one obtains a constant parameter time domain model based on the
frequency domain results. Much literature has been devoted to the
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replacement of the convolutions by a state-space model—see, for
example, Yu and Falnes (1995), Kristiansen et al. (2005) and
Taghipour et al. (2008). Compared to the frequency domain model,
a time domain model has the advantage of analyzing nonlinear
problems, providing the hydrodynamics remain linear. Any non-
linear effects can be added into the model as additional loads (Wu
and Moan, 1996). In the authors’ previous paper (Chen et al., 2012),
the time domain model described by the Cummins equation
focused on investigating the complex dynamics of a floating barge
with cubic springs in surge.

This paper develops a simple wave-induced impact model for
float-over operations by considering only the heaving motion of
the barge-deck system, and incorporating additional piecewise
linear terms in the Cummins equation. The simplified single
degree of freedom (SDOF) wave-induced impact model is similar
to a bilinear impact oscillator that has been extensively studied
since Akashi (1958) analyzed the motion of an electrical bell.
Studies of both hard and soft impacts can be found in the
literature. Thompson and Ghaffari (1982) investigated the chaotic
behaviour and sub-harmonic motions of a hard impact oscillator.
Shaw and Holmes (1983) investigated the dynamics of a periodi-
cally forced piecewise linear oscillator by both analytical solutions
and digital simulations, and provided the fundamentals of a hard
impact oscillator. Lee (2005) investigated the dynamics of a hard
impact oscillator based on the Runge–Kutta integration algorithm.
Andreaus et al. (2010) simulated the dynamics of a bilinear soft
impact oscillator based on the generalized Jacobian Matrix
method. In the present paper, a combination of hydrodynamic
analysis of the wave-induced dynamics, and dynamic analysis of
an impact oscillator, is applied to investigate the impact behaviour
of the barge-deck system under wave excitation. Both a one-body
system (barge and deck moving as one body) and a two-body
system (barge and deck moving separately) are considered. The
numerical scheme described by Lee (2005) and Virgin and Bishop
(1988) is applied here in deriving the time domain results.
Analysis tools such as Poincaré maps, impact maps, bifurcation
diagrams and phase trajectories are used to identify the motion
characteristics.

This paper mainly has two objectives. The first is to demon-
strate the methodology of combining hydrodynamic analysis and
dynamic analysis to investigate the wave-induced impacts arising
in a float-over installation. The second objective is to investigate
how the impact behaviour changes as the wave excitations change,
and perform a parametric study to analyze the sensitivity to
certain control parameters of the overall system. The paper is
arranged as follows. Section 2 briefly describes the theoretical
background of the wave-induced impact model based on the
Cummins equation. Analysis tools for identifying nonlinear
dynamics are briefly reviewed in Section 3. Section 4 gives
validations of the established time domain model. The hydrody-
namic analysis of the float-over system is given in Section 5.
Results and discussions of the wave-induced LMU impacts are
illustrated in Section 6, for both one-body and two-body systems,
and finally some concluding remarks are given in Section 7.

2. Theoretical background of wave-induced impact oscillator

2.1. Parametric time domain model based on the Cummins equation

2.1.1. Cummins equation and Ogilvie relations
The forces and responses of floating structures are usually

obtained by means of a linear analysis in the frequency domain.
Cummins (1962) derived a linear time domain equation to
describe the wave excited dynamics of a floating marine structure,
which is now known as the Cummins equation. For the case of

zero forward speed, the equation for a floating rigid body has the
following form

½ΜþAð1Þ�€xðtÞþ
Z t

0
hðt � τÞ_xðτÞdτþKxðtÞ ¼ f excðtÞ ð1Þ

where, x is the vector of the six degrees of freedom; M is the 6�6
mass matrix; A (1) is a constant positive-definite matrix that is
known as the infinite-frequency added mass matrix; the kernel of
the convolution term hðtÞ, linked to memory effects, is the matrix
of retardation functions (impulse response functions); K is the
hydrostatic stiffness matrix; and f excðtÞ are the wave excitation
forces and moments.

Ogilvie (1964) considered Eq. (1) in the frequency domain by
using the Fourier transform and derived the following frequency
domain model:

x̂ðjωÞ �ω2½MþAðωÞ�þ jωBðωÞþK
� �¼ f̂

excðjωÞ ð2Þ
where x̂ðjωÞ and f̂

excðjωÞ are Fourier transforms of x(t) and f excðtÞ.
The hydrodynamic coefficients (added mass A(ω) and radiation
damping B(ω)) and wave excitation forces f̂

excðjωÞ can be readily
obtained from 3d hydrodynamic codes such as the program
DIFFRACT (Eatock Taylor and Chau, 1992; Zang et al., 2005;
Walker et al., 2008; Sun et al., 2012) used in this paper. The
relationship between the parameters of Eq. (1) and those of Eq. (2)
were given by Ogilvie (1964)

AðωÞ ¼ Að1Þ� 1
ω

Z 1

0
hðτÞ sin ðωτÞdτ; ð3aÞ

BðωÞ ¼
Z 1

0
hðτÞ cos ðωτÞdτ: ð3bÞ

By taking the Inverse Fourier Transform of the above equations,
the impulse response function can be formulated as follows:

hðtÞ ¼ � 2
π

Z 1

0
ω½AðωÞ�Að1Þ� sin ðωtÞdω; ð4aÞ

or

hðtÞ ¼ 2
π

Z 1

0
BðωÞ cos ðωtÞdω: ð4bÞ

Eq. (4b) is the preferred way to calculate hðtÞ since it converges
faster than Eq. (4a). This then provides the way to evaluate the
time domain model based on frequency domain results. In
practice, due to the limitations of computation time and panel
sizes, diffraction codes can only produce accurate results up to a
certain frequency, say s. In order to obtain accurate results at high
frequencies, however, the size of panels needs to be very fine,
resulting in a very large number of computations (Pérez and
Fossen, 2008a). Therefore, the calculation of the impulse response
functions hðtÞ is generally undertaken in the following way

hðtÞ ¼ 2
π

Z s

0
BðωÞ cos ðωtÞdωþ 2

π

Z 1

s
BaðωÞ cos ðωtÞdω ð5Þ

where, Ba(ω) represents an asymptotic approximation of B(ω) at
high frequencies, which can be determined through polynomial
fitting (Greenhow, 1986). The errors associated with this fit have
been investigated by Chen et al. (2012), and it was shown how an
appropriate value of the cut-off frequency s can be determined.

2.1.2. Parametric model of the convolutions by using a state-space
model (SSM)

The convolution term in the Cummins equation describes a
causal linear time-invariant system (Yu and Falnes, 1995). This
model is, however, cumbersome for numerical simulation and not
well suited for the design and analysis of motion control systems
(Kristiansen et al., 2005). In addition, it may be very time-
consuming to directly evaluate the convolutions depending on
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