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a  b  s  t  r  a  c  t

One  approach  for representing  uncertainty  is  the  use  of  fuzzy  sets or fuzzy  numbers.  A  new  approach
is  described  for the  solution  of  nonlinear  dynamic  systems  with  parameters  and/or  initial  states  that
are  uncertain  and represented  by fuzzy  sets  or fuzzy  numbers.  Unlike  current  methods,  which  address
this  problem  through  the use  of  sampling  techniques  and  do not  account  rigorously  for the effect  of
the  uncertain  quantities,  the  new  approach  is  not  based  on  sampling  and  provides  mathematically  and
computationally  rigorous  results.  This  is  achieved  through  the  use  of explicit  analytic  representations
(Taylor  models)  of  state  variable  bounds  in terms  of the uncertain  quantities.  Examples  are  given that
demonstrate  the  use  of this  new  approach  and  its computational  performance.

© 2012 Elsevier Ltd. All rights reserved.

1. Introduction

In the context of engineering and science, nonlinear dynamic
models typically involve uncertain quantities. For example, in an
initial value problem (IVP) described by a system of ordinary dif-
ferential equations (ODEs), the initial conditions may  be uncertain,
and there may  be uncertain parameters in the ODE model. Deter-
mining the effect of such uncertainties on the model outputs is
clearly an important issue. To address this problem requires first
that an appropriate representation of the uncertain quantities be
chosen, and then that these be propagated through the nonlinear
ODE model to determine the corresponding uncertainties in the
model outputs.

There are a number of approaches that can be used to rep-
resent uncertainty. A common approach is to treat an uncertain
quantity as a random variable described by some probability dis-
tribution. However, the true probability distribution may  itself be
uncertain. This gives rise to the concept of a probability distribution
variable, as described by Li and Hyman (2004),  which is typically
characterized by a probability box (p-box) (Ferson, Ginzburg, &
Akç akaya, 1996; Williamson & Downs, 1990) that provides bounds
on the probability distribution function. However, many types of
uncertainty arise from lack of knowledge, not from randomness,
and so may  not be appropriately represented through the use of
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probabilities. In this case, one simple approach is to treat an uncer-
tain quantity as an interval. This requires only knowledge of an
upper and lower bound on the uncertainty, and implies nothing
about the distribution of the uncertainty. If there is more insight
into the nature of the uncertainty, then it might be represented
using a fuzzy set (Zadeh, 1965) or a fuzzy number (a particular
type of fuzzy set) (Dubois & Prade, 1980; Hanss, 2005; Kaufmann
& Gupta, 1985; Nahmias, 1977). Fuzzy sets can be viewed as rep-
resenting possibilities, not probabilities, and form the basis for a
theory of possibility (Zadeh, 1978) that is a counterpart to the tradi-
tional theory of probability. The relationships between possibilities
and probabilities have been well explored (e.g., Dubois, Foulloy,
Mauris, & Prade, 2004; Dubois & Prade, 1982; Gupta, 1993; Klir &
Parviz, 1992), with a basis in Zadeh’s (1978) possibility/probability
consistency principle. This states that something must be possible
before it can be probable. Thus, one simple interpretation of pos-
sibility is as an upper bound on probability. A fuzzy number can
be interpreted as a nested set of intervals, with each successively
smaller interval representing a range that is “more possible” than
the larger one before it.

Hanss (2005) provides several examples of the use of fuzzy num-
bers to represent uncertainties in engineering problems involving
linear and nonlinear ODE and PDE models. The formulation and
solution of such “fuzzy-parameterized” models is a subdomain of
fuzzy set theory that has received relatively little attention, with
much more work having been focused on the use of fuzzy logic and
reasoning methods. For example, just within the field of chemical
engineering, there have been many applications of fuzzy logic and
reasoning, in process control (e.g., Andujar & Bravo, 2005; Chen
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& Chang, 2006; Chen, Chang, & Shieh, 2001; Gromov, Kafarov, &
Matveikin, 1995; Kaucsár, Axente, Cosma, & Baldea, 2007; Sanjuan,
Kandel, & Smith, 2006; Zhang, Ye, Chu, Zhuang, & Guo, 2006), safety
and reliability analysis (e.g., Guimarães & Lapa, 2004; Hassana et al.,
2009; Meel & Seider, 2006; Takeda, Shibata, Tsuge, & Matsuyama,
1994; Yong, Zheng, Zheng, Youxian, & Zheng, 2007; Yu & Lee,
1991), knowledge processing (e.g., Arva & Csukas, 1987; Claudel,
Fonteix, Leclerc, & Lintz, 2003; Dohnal, Exall, Carsky, Morris, &
Dohnalova, 1994; Gromov, Kafarov, & Matveikin, 1996; Hanratty
& Joseph, 1992; Hanratty, Joseph, & Dudukovic, 1992; Johansen
& Foss, 1997; Schmitz & Aldrich, 1998; Stephane & Marc, 2008;
Tsekouras, Sarimveis, Raptis, & Bafas, 2002; Vrba, 1991), and other
areas.

In this paper, we will focus on the use of fuzzy sets and fuzzy
numbers to represent uncertainties in nonlinear dynamic models,
and consider how to compute the resulting fuzzy trajectories in
a verified way. For propagation of fuzzy uncertainties in dynamic
models, a typical approach is to solve the underlying ODE prob-
lem multiple times using prescribed and/or arbitrary samples of
the uncertainty quantities. For example, this is the basis of the
“transformation method” of Hanss (2002, 2005).  In general, how-
ever, this approach is not rigorous and may  underestimate the true
effect of an uncertain quantity on the model outputs, as discussed
in more detail below. We  will describe here a much different strat-
egy for the propagation of fuzzy uncertainties in dynamic models.
This approach is not based on sampling, and provides mathemati-
cally and computationally rigorous results in all cases. Our method
is based on the use of techniques (Lin & Stadtherr, 2007) devel-
oped for the verified solution of parametric ODE systems. These
techniques provide explicit analytic representations (Taylor mod-
els) of the state variables, from which rigorous interval bounds on
the state variables can be obtained. We  explore here how to extend
these techniques to provide rigorous fuzzy set bounds on the state
variables in fuzzy-parameterized, nonlinear dynamic models.

The remainder of this paper is structured as follows: In the next
section we will provide a concise formulation of the problem to be
solved. In Section 3, we will provide background on some of the con-
cepts and methods that we will utilize. This includes background
on interval analysis, fuzzy sets and numbers, fuzzy arithmetic,
and Taylor models. Then, in Section 4 we will describe our new
approach for the rigorous solution of fuzzy-parameterized, nonlin-
ear dynamic models, with examples and results given in Section 5.
Finally in Section 6 we will provide concluding remarks about this
work.

2. Problem statement

We will consider nonlinear dynamic systems described by IVPs
of the form

dy

dt
= f (y, �), y(t0) = y0, t ∈ [t0, tm]. (1)

Here the n state variables are represented by the state vector y and
have initial values y0. There are p time-invariant parameters repre-
sented by the parameter vector �. The parameters and initial values
are uncertain and bounded by the intervals � and Y0, respectively.
That is,

� ∈ �, y0 ∈ Y0. (2)

Additional information about the uncertainties is available in the
form of fuzzy numbers or, more generally, in the form of fuzzy sets.
That is, for a parameter �i ∈ �i, the interval �i supports a fuzzy
set denoted by �̃i, i = 1, . . .,  p, and we define the fuzzy parameter
vector �̃ = (�̃1, . . . , �̃p)T. Similarly, for an initial value y0,i ∈ Y0,i,
the interval Y0,i supports a fuzzy set Ỹ0,i, i = 1, . . .,  n, and we define

the fuzzy initial state vector Ỹ0 = (Ỹ0,1, . . . , Ỹ0,n)T. In these terms,
the uncertainties can now be described by

� ∈ �̃,  y0 ∈ Ỹ0. (3)

Fuzzy sets and numbers will be described in more detail in
Section 3.2.  Our goal is to rigorously propagate these uncertainties,
thus computing fuzzy sets Ỹi(t), i = 1, . . .,  n, that character-
ize the uncertainty in the state trajectories yi(t), i = 1, . . .,  n.
That is, we  seek to determine the fuzzy state vector Ỹ (t) =
(Ỹ1(t), . . . , Ỹn(t))T.

We  assume that f is representable by a finite number of
standard functions, and that it is sufficiently differentiable for the
verified ODE solver used (see Section 4.1). We  also note that if the
ODE model is nonautonomous, or involves parameters with time
dependence of a known form, then such a model can easily be
converted into the form of Eq. (1).

3. Background

3.1. Interval analysis

A real (closed) interval X = [X, X] can be defined as the set
X = {x ∈ R  | X ≤ x ≤ X}. Here an underline is used to indicate the
lower bound of an interval and an overline is used to indicate the
upper bound. The width of an interval is w(X) = X − X . A real inter-
val vector X = (X1, . . .,  Xn)T has n real interval components and
can be interpreted geometrically as an n-dimensional rectangle.
Basic arithmetic operations with intervals X and Y are defined by
X ◦ Y = {x ◦ y | x ∈ X, y ∈ Y}, ◦ ∈ { + , − , × , ÷ }, with division in the case
of 0 ∈ Y allowed only in extensions of interval arithmetic (Hansen
& Walster, 2004). Interval versions of the elementary functions
are similarly defined. The endpoints of an interval are computed
with a directed (outward) rounding; that is, the lower bound is
rounded down and the upper bound is rounded up. Thus, inter-
val operations are guaranteed to produce bounds that are rigorous
both mathematically and computationally. A number of good intro-
ductions to interval analysis and computing with intervals are
available (Hansen & Walster, 2004; Jaulin, Kieffer, Didrit, & Walter,
2001; Kearfott, 1996; Moore, Kearfott, & Cloud, 2009; Neumaier,
1990).

For a real function f(x) with interval-valued variables x ∈ X ,
the interval extension F(X) can be defined as a real interval that
bounds the range of f( x) for x ∈ X . One way to compute F( X)
is to substitute X into the expression for f(x) and then to eval-
uate with interval arithmetic. However, the tightness of these
bounds depends on the form of the expression used to evalu-
ate f(x). If this is a single-use expression, in which no variable
appears more than once, then the exact function range will be
obtained (within roundout). However, if any variable appears mul-
tiple times, then overestimation of the range may occur. This
overestimation is due to the “dependency” problem of interval
arithmetic. A variable may  take on any value within its interval,
but it must take on the same value each time it occurs in an expres-
sion. Unfortunately, this dependency is not detected when the
interval extension is computed using standard interval arithmetic.
For example, consider the case f(x) = (1 − x)/(2 − x), with x ∈ [0,
1]. Using interval arithmetic gives F([0, 1]) = (1 − [0, 1])/(2 − [0,
1]) = [0, 1]/[1, 2] = [0, 1]. This correctly bounds, but significantly
overestimates, the true function range of [0, 1/2]. Using a differ-
ent expression for this function, f(x) = 1/(x  − 2) + 1, which is now
a single-use expression, and evaluating with interval arithmetic
gives F([0, 1]) = 1/([0, 1] − 2) + 1 =1/[−2, − 1] + 1 = [−1, − 1/2] + 1 = [0,
1/2], the true function range. We  could also obtain the true range
by noting that, for x /= 2, f(x) is a monotonically decreasing func-
tion. Thus, F([0, 1]) = [f(1), f(0)] = [0, 1/2]. For more general cases,
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