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a b s t r a c t

In this paper the Particle Finite Element Method (PFEM) is applied to the simulation of the sea-landing of
an unmanned aerial vehicle (UAV). The problem of interest consists in modelling the impact of the
vehicle against the water surface, analyzing the main kinematic and dynamic quantities (such as loads
exerted upon the capsule at the moment of the impact). The PFEM, a methodology well-suited for free-
surface flow simulation is used for modelling the water while a rigid body model is chosen for the
vehicle. The vehicle under consideration is characterized by low weight. This leads to difficulties in
modelling the fluid–structure interaction using standard Dirichlet–Neumann coupling. We apply a
modified partitioned strategy introducing the interface Laplacian into the pressure Poisson's equation for
obtaining a convergent FSI solution. The paper concludes with an industrial example of a vehicle sea-
landing modelled using PFEM.

& 2013 Elsevier Ltd. All rights reserved.

1. Introduction and outline

The sea-landing of aerial vehicles is one important practical
application where numerical simulation of fluid–structure inter-
action (FSI) is of great importance since the preliminary physical
tests turn out to be excessively expensive. The simulation tests can
provide both qualitative and quantitative insight into the move-
ment of the vehicle and predict the impact forces.

It is worth mentioning that up-to-date there exists a rather
sparse literature on the sea-landing studies. Experimental inves-
tigations of the water landing were presented in Vaughan (1959).
Numerical studies can be found e.g. in Littell (2007) where the
commercial software LS-DYNA was used. However, several of the
existing fluid–structure interaction techniques can be applied to
the problem of interest. One such possibility is the Arbitrary
Lagrangian Eulerian (ALE) approach known for its accuracy (see
e.g. Donea et al., 1982 or Souli et al., 2000). Unfortunately, even the
most advanced ALE formulations arrive to their limits when the
domain shape deformations are large, which is the case for the
problem at hand. In such situations, re-meshing becomes inevi-
table. Another alternative are the fixed grid approaches equipped
with the volume of fluid (VOF) or the Level set method (Legay
et al., 2006; Rossi et al., 2013). Although possible, the use of fixed

grid methods is not trivial for the problem at hand, since it would
require dealing with an FSI boundary cutting the grid elements at
arbitrary positions. This would require implementing some sort of
embedded technique (Codina et al., 2009; Ryzhakov and Oñate,
2010). Smooth Particle Hydrodynamics (SPH)-based approaches
(see e.g. Liu, 2003; Antoci et al., 2007) represent a viable alter-
native and we verify our formulation against one of the few
available benchmark examples (Oger et al., 2006). The problem
of the majority of SPH methods is related to the artificial
compressibility they usually introduce, which leads to the genera-
tion and propagation of non-physical pressure waves in the fluid
domain. Such effects may be relevant when estimating the impact
forces.

Yet another possibility relies on applying the Particle Finite
Element Method (PFEM) (Oñate et al., 2004; Idelsohn et al., 2004;
Larese et al., 2008; Ryzhakov et al., 2010). PFEM is a class of
Lagrangian Finite Element methods developed for treating free-
surface flows and it enables efficient treatment of such complex
FSI problems. This option is explored here. We present an
approach where the PFEM fluid formulation is coupled to the
rigid body model representing the vehicle. The rigid body approx-
imation is a reasonable choice considering that the deformations
of the solid are of no interest in the study.

In the present study the unmanned aerial vehicle (UAV) under
consideration is characterized by a low weight. The average
density, when empty, is some three times lower than that of
water. In such case standard Dirichlet–Neumann FSI strategies
require excessive number of coupling iterations or do not converge
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at all. There are several techniques for tackling this problem.
Among them there are the under-relaxation techniques (Kuettler
and Wall, 2008), Robin–Robin coupling strategies (Badia et al.,
2009), methods based on introducing slight compressibility to the
fluid (Ryzhakov et al., 2010) and others. We adopt here the FSI
coupling equipped with the so-called “interface Laplacian techni-
que” (Idelsohn et al., 2009; Rossi and Oñate, 2010) which ensures
convergence. This technique accounts for the structural motion
within the pressure Poisson's equation of the fluid. It can be easily
implemented within an existing Dirichlet–Neumann coupling.

The paper is organized as follows. First, the basic concepts of
the PFEM are introduced. The fractional step technique is applied
to solution of the governing system. Next, a rigid body model is
described and the FSI coupling scheme is presented. The paper
concludes with an example section, where the method is validated
first and then applied to a problem of sea-landing of a UAV. Two
stages of analysis are presented: the impact of the capsule against
water and the floating of the capsule in water.

2. The PFEM-based model for the fluid

The PFEM adopts an updated Lagrangian framework for the
description of the fluid, where the mesh nodes are treated as
particles that can freely move and even separate from the main
fluid domain (Oñate et al., 2004; Idelsohn et al., 2004). The key
idea of the PFEM is that the variables of interest are stored at the
nodes instead of the Gauss points. This results in a hybrid between
a standard FE and a mesh-free method. A finite element mesh is
created at every time step of the dynamic problem and the
solution is then stored at the nodes. The nodes move according
to their velocity obtaining their new position and then the finite
element mesh is re-generated using a Delaunay triangulation
(Delaunay, 1934). In our approach we use simplicial triangular/
tetrahedral meshes. In treating problems involving free surface
flows the boundary is determined at every time step using the
alpha-shape technique (Akkiraju et al., 1995; Oñate et al., 2004).

It is important to remark that the convective term of the
momentum equation disappears in the Lagrangian description.
Therefore the problem remains elliptic and the discrete system is
symmetric. Thus the stability problems faced in Eulerian methods
due to the presence of the convective term do not exist in PFEM.

Governing equations for an incompressible fluid in a Lagrangian
framework: A viscous incompressible flow is described by Navier–
Stokes equations, which in the Lagrangian framework can be
written as (a Newtonian fluid is considered):

ρ
∂v
∂t

þ ∇p−∇ � ðμ∇vÞ ¼ ρg ð1Þ

∇ � v¼ 0 ð2Þ
where v is the velocity vector, p the pressure, t the time, g the
body force, ρ the density and dynamic viscosity μ.

We define the residual of the momentum and continuity
equations as

rm ¼ ρg− ρ
∂v
∂t

þ ∇p−∇ � ðμ∇vÞ
� �

ð3Þ

rc ¼∇ � v ð4Þ
The problem to be solved becomes finding v and p such that

rm ¼ 0 ð5Þ
and

rc ¼ 0 ð6Þ

A discrete version of the governing system obtained using
linear equal order velocity–pressure finite elements in space and
Backward Euler time integration scheme1 reads (note that the
discrete variables are distinguished from their continuous counter-
parts by an over-bar)

rm ¼ F
nþ1

− M
vnþ1−vn

Δt
−Gpnþ1 þ μLvnþ1

� �
¼ 0 ð7Þ

rc ¼Dvnþ1 þ Spnþ1 ¼ 0 ð8Þ
where v and p are the velocity and pressure respectively, F is the
body force vector, M is the mass matrix, L is the Laplacian matrix,
G is the gradient matrix and S is the stabilization matrix necessary
for ensuring pressure stability whenever equal order velocity–
pressure interpolation is used. Discussing details of the pressure
stabilization lie outside of the scope of this work and the ideas
presented here can be applied in conjunction with any stabiliza-
tion technique such as Galerkin/Least squares (GLS) (Hughes et al.,
1989), finite calculus (FIC) (Oñate, 2000, 2004), algebraic sub-grid
scales (ASGS) or orthogonal sub-scales (OSS) (Codina, 2002). In the
present implementation the FIC stabilization method was used.

The matrices are assembled from the elemental contributions
defined as

M¼MIJlk ¼
Z
Ωe

δkl NI ;NJ
� �

dΩ

L¼ LIJ ¼
Z
Ωe

∂NI

∂xk
;
∂NJ

∂xl

� �
dΩ

G¼ GIJk ¼
Z
Ωe

∂NI

∂xk
;NJ

� �
dΩ

D¼GT

F¼ FIk ¼
Z
Ωe

ðNI ; fkÞ dΩ

where N stands for the standard linear FE shape functions and δ is
the Kronecker delta function. The capital indices stand for the
nodal numbers while lower-case indices refer to the spatial
components of a vector.

The fractional step method (Chorin, 1967; Temam, 1969) is
applied to the monolithic system defined by Eq. (7) permitting an
efficient implementation. It is based on the solution of the
momentum equations for an intermediate (non-solenoidal) velo-
city ~v and a subsequent correction performed to obtain the end-
of-step velocity vnþ1. Thus the solution of the governing system
equation (7) is replaced by three sequential steps:

~rm ¼ Fnþ1− M
~v−vn

Δt
−Gpn þ μL ~v

� �
¼ 0 ð9Þ

ΔtLðpnþ1−pnÞ þ Spnþ1 ¼D ~v ð10Þ

M
vnþ1− ~v

Δt
þ Gðpnþ1−pnÞ ¼ 0 ð11Þ

Note that the velocity and the pressure solution steps become
decoupled. First, Eq. (9) is solved for ~v knowing pn and vn, then
the end-of-step pressure pnþ1 is computed from ~v (Eq. (10)).
Finally, the end-of-step velocity is found from pnþ1 and ~v accord-
ing to Eq. (11).

Re-meshing and boundary definition: As in the PFEM the mesh is
moving in time, the computational mesh undergoes deformation.
Therefore, the re-meshing and the re-determination of the
domain's boundaries must be executed. In the PFEM the mesh is

1 The time integration using the Backward Euler scheme is assumed for the
sake of simplicity. However, all the arguments presented in the paper can be
extended to any implicit time integration scheme.
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