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In this paper, a method of solution based on a finite difference scheme is developed, via which the

partial differential equations of motion and boundary conditions, presented in Part 1, are converted into

a set of first-order ODEs which are then solved numerically. The mathematical model is validated by

considering some simplifications which enable us to compare the numerical results with the results of

short pipes simply supported at both ends (pinned–pinned) and subjected to axial flow. A typical

Argand diagram is then presented for a long pipe (L̂ ¼ 2000 m) which shows the evolution of lowest

three eigenfrequencies of the system as a function of nondimensional flow velocity (towing speed).

For the same pipe, the deformation and time-trace diagrams at different values of flow velocity are also

given. The results show clearly that a long pipe towed underwater may lose stability by divergence and

at higher flow velocities by flutter; the deformation is confined to a small segment of the pipe, close to

the downstream end. Some numerical comparisons are also presented in which the effects of cable

stiffness and the skin friction coefficient on the onset of instabilities are studied.

& 2013 Elsevier Ltd. All rights reserved.

1. Introduction

In Part 1 of this two-part study, the equations of motion for the
dynamics of long pipes (cylinders) towed underwater have been
derived. In fact, these equations can be used to study the
dynamics of both long and short pipes subjected to axial flow,
since no limiting simplification has been made on the flexural
rigidity of the pipe, contrary to some other studies in which, for
long pipes, the flexural rigidity of the body has been neglected
(e.g., Triantafyllou and Chryssostomidis, 1985) or only partly been
taken into account (e.g., Dowling, 1988).

Interest in the dynamics of very slender cylinders, where the
length-to-diameter ratio, L̂=D̂, is of order 102 or even 105,
subjected to axial flow may also be found in some of the earliest
work carried out for possible application to submarine antennas
and hydrophone arrays (e.g., Ortloff and Ives, 1969; Pao, 1970;
Lee, 1981). In these analyses, which unfortunately were made
based on the erroneous version of equations of motion proposed
by Paı̈doussis (1966), and not the corrected ones (Paı̈doussis,
1973), they found a different stability behaviour for long cylinders
from that of short ones.

Recently, in a paper by de Langre et al. (2007), the stability of a
thin flexible cylinder subjected to axial flow and fixed at the
upstream end has been considered. Contrary to previous predic-
tions made via simplified models (Dowling, 1988; Triantafyllou
and Chryssostomidis, 1985), they found that flutter may arise for
very long cylinders if the free downstream end of the cylinder is
well-streamlined. They also found a limit regime in which the
instability characteristics of the system are not affected by the
length of the cylinder, and the cylinder deformation is confined to
a finite region close to the downstream end.

A number of experiments were conducted (Paı̈doussis, 1968)
with relatively short (L̂=D̂C20) flexible cylinders held in flow by
a length of string attached to their upstream end. Later, Ni and
Hansen (1978) studied experimentally the flow-induced lateral
motions of a flexible tube in axial flow; the flexible tube was very
slender (L̂=D̂C500) and approximately neutrally buoyant, and it
was fixed at the upstream end and free at the downstream end.
A set of experiments were also carried out by Sudarsan et al.
(1997) to study the hydroelastic instability of flexible slender
cylinders towed underwater. These experiments were conducted
in a towing tank, and the models were with length-to-diameter
ratios of 50 and 150. Generally, in the above-mentioned experi-
ments divergence and flutter have been observed; moreover, in
the case of very slender cylinders, the deformation seems to be
centered particularly in the region close to the downstream end of
the cylinders.

Contents lists available at SciVerse ScienceDirect

journal homepage: www.elsevier.com/locate/oceaneng

Ocean Engineering

0029-8018/$ - see front matter & 2013 Elsevier Ltd. All rights reserved.

http://dx.doi.org/10.1016/j.oceaneng.2013.01.007

n Corresponding author. Tel.: þ1 514 398 6294; fax: þ1 514 398 7365.

E-mail address: michael.paidoussis@mcgill.ca (M.P. Paı̈doussis).

Ocean Engineering 64 (2013) 161–173

www.elsevier.com/locate/oceaneng
www.elsevier.com/locate/oceaneng
http://dx.doi.org/10.1016/j.oceaneng.2013.01.007
http://dx.doi.org/10.1016/j.oceaneng.2013.01.007
http://dx.doi.org/10.1016/j.oceaneng.2013.01.007
mailto:michael.paidoussis@mcgill.ca
http://dx.doi.org/10.1016/j.oceaneng.2013.01.007


In this paper, a finite difference scheme is used to spatially
discretize the linearized unsteady equations of motion. The
resultant set of time-domain ODEs are solved by using DIVPAG
routine of Fortran IMSL library. Then, a simplified version of the
equations which mimics the dynamical behaviour of short simply
supported (pinned–pinned) pipes in axial flow is used to validate
the present model. Finally, in the last part of this paper, the
numerical results for the dynamics of long pipes flexibly con-
nected to a towing vessel at the upstream end and to a trailing
vessel at the downstream end are presented.

It is emphasized that the model considered here, involving
long pipes towed underwater and subject to realistic nonclassical
boundary conditions, is presented for the first time. In the
numerical solutions presented, the effect of various system
parameters is examined for the first time. Moreover, this paper
presents numerical solutions for both short and long pipes,
allowing the reader to understand the dynamical features of both
systems, side by side.

2. The method of solution

In this section, the method of solution for the unsteady
equations of motion for cases with only axial flow (no cross-
current) is discussed. Although equations for both the steady state
(related to the effect of a cross-current) and for unsteady self-
excited motions have been derived in Part 1, we are not going to
present any numerical solutions here for the steady current-
induced deformation, since this is not the aim of this study. The
dynamics in the presence of a cross-flow is the subject of another
paper, currently under preparation.

2.1. The unsteady equations of motion

With no cross-current (Uz ¼ 0), there is no steady-state defor-
mation in the z-direction. In this case the y- and z-direction
equations, as given in Part 1, become identical, and the dynamics
of the system can be studied by solving one of them. The equation
of motion in the z-direction can be written as
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in which all quantities are nondimensional. Here w is the dis-
placement in the z-direction, x the longitudinal coordinate, and e
a measure of the slenderness ratio defined as e¼ ‘̂=D̂ where
‘̂ ¼ ½ðpD̂Þ2L̂�1=3; t represents time, and L̂ and D̂ are the length and
the diameter of the pipe, respectively; Ux the axial flow velocity
(tow speed), b the ratio of the fluid mass to the total mass (fluid
and structure), cf the frictional drag coefficient, cd the zero-flow
normal coefficient, and a a coefficient used for normalizing the
longitudinal coordinate; T the steady tension in the pipe, which
can be found in the dimensional form in Eq. (17) of Part 1.

The expression for T can be written in nondimensional form as

T ¼ T 1�
1

2a ecf U2
xx, ð2Þ

where T 1 is the tension at the pipe upstream end. By substituting
Eq. (2) into Eq. (1), the equation of motion takes the form
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Fig. 1. The spatial discretization: the body is divided into N elements of equal length (1/N) with mesh points at the centre of the elements.
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Fig. 2. Typical results showing (a) the shape of a ‘‘short pipe’’ with very stiff end-

springs at different time instants and (b) the time trace of the pipe mid-point;

Ux ¼ 0:70.
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