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a b s t r a c t

A new analytical method to predict nondestructively the elastic critical pressure of a submerged

cylindrical shell which is subjected to external hydrostatic pressure is presented in this paper.

The structural-fluid coupling dispersion equation of the system is established considering axial and

lateral hydrostatic pressure based on the wave propagation approach. The data of the natural

frequencies of the system under different hydrostatic pressures is obtained by solving the coupled

dispersion equation. The curve of the fundamental natural frequency squared versus hydrostatic

pressure is then drawn with the data, which is straight approximately. The elastic critical hydrostatic

pressure is obtained when the corresponding fundamental natural frequency decreases to zero. The

results obtained from the present approach show good agreement with published results.

& 2012 Elsevier Ltd. All rights reserved.

1. Introduction

The cylindrical shell is widely used in mainly underwater
engineering areas such as shipbuilding, pipelines and offshore plat-
forms. The elastic buckling loads play a very important role in the
safety of these structures. The elastic buckling pressure of cylindrical
shells subjected to external hydrostatic pressure has been investi-
gated. Timoshenko and Gere (1961) gave the classical solution of the
buckling pressure for a very long cylindrical shell with uniform
thickness under external hydrostatic pressure by assuming that the
cylindrical shell is in plane strain without considering the effect of
the boundary conditions. Tatianna and Peter (1996) studied the
stability of a cylindrical shell under lateral pressure in various
boundary conditions based on the Flügge’s shell equations. Based
on the approach of energy function, the hydrostatic buckling of
shells with various boundary conditions is studied by Pinna and
Ronalds (2000). The study has analyzed the effect of the boundary
condition on the buckling load of cylindrical shells with various
lengths and concluded that the boundary condition has no effect on
the buckling load for long shells.

In contrast to the destructivity of the experiments, the nondes-
tructive prediction approach of the buckling loads has been studied
by many authors (Plaut and Virgin, 1990; Singer, 1982; Souza et al.,
1983; Souza and Assaid, 1991). The elastic critical loads were
analyzed by fitting the curve of natural frequency and applied load
of which the data was obtained from the experiments in the past

years. With the development of the computer numerical simulation
technology, the data can also be obtained from the simulation using
FEM program. Recently the non-linear finite element software
ABAQUS is widely used to study the buckling problem of cylindrical
shells (Kim and Kim, 2002; Mandal and Calladine, 2000; Pinna and
Ronalds, 2000; Xue and Hoo Fatt, 2002).

For submerged cylindrical shells, wave propagation approach is
often used to study the vibration characteristics. Wave propagation
in a cylindrical shell immersed in a fluid medium is of basic
importance in fields like underwater acoustics, noise and vibration
control, etc. (Junger and Feit, 1972). One of the basic studies is to
solve the dispersion equation. If the traveling waves on the shell are
expressed in the form of e iot�iknszð Þ, where z is the axial distance
along the shell, kns axial wavenumber and o the frequency, the
dispersion equation can be written in a general form of F kns,oð Þ ¼ 0.
The coupled natural frequency of submerged cylindrical shells can
be solved from the dispersion equation (Zhang, 2002a). Wave
propagation of cylindrical shells has also been investigated by many
researchers in different fields (Fuller, 1981; Xu and Zhang, 1998;
Wang and Lai, 2000; Zhang et al., 2001b; Zhang, 2002b; Zhang,
2002c; Zhu et al., 2007; Yan et al., 2008).

In this paper, the hydrostatic pressure is considered as an
external load imposed on the cylindrical shell. Based on wave
propagation method, a nondestructive approach to predict
the elastic critical pressure of the submerged cylindrical shell
which is assumed to be ideal and has no imperfection
is investigated. The effect of the structural-fluid coupling is
included in the view of wave propagation and the natural
frequencies are obtained by solving the dispersion equation of
the system. The elastic critical pressure is obtained by fitting the
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curve of the fundamental natural frequency versus the hydro-
static pressure.

2. Motion equations of the shell and fluid

As in Fig. 1, a thin cylindrical shell of length L, thickness h, mean
radius R, Yong’s modulus E, Poisson’s ratio m, and density rs, is
considered to be submerged in a fluid of density rf where the
velocity of sound is cf. The cylindrical coordinates system (r, j, z) is
applied in our work to define the position of points in the region.
The coordinate axis z is chosen to coincide with the cylindrical shell
centerline, while the coordinate axes r and y respond to the radial
and circumferential directions respectively. The displacements of
shell are defined by u, v, w in the z-, y-, r-directions respectively.

Only harmonic motion of the coupling system is considered.
Based on the classic Flügge shell equations (Flügge, 1973), the
vibrational equations of cylindrical shell can be expressed as
follows, in which the hydrostatic pressure is modeled as the static
prestress terms in the shell equations (Keltie, 1986), (For brevity,
the factor eiot is omitted in the following expressions, o is the
circular driving frequency.):
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where T1 and T2 are the terms containing the effects of the
hydrostatic pressure which consist of an axial prestress compo-
nent and a radial prestress component. P0 is the external hydro-
static pressure. Pf is the fluid acoustic pressure.

The fluid around the cylindrical shell satisfies the acoustic
wave equation and the equation of motion of the fluid can be
written in the cylindrical coordinate system (r, j, z) as:
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where Pf is the acoustic pressure and cf is the sound speed of the
fluid. The r and y coordinates are the same as those of the shell.

3. Wave propagation method

According to the wave propagation approach, the displace-
ment components of the cylindrical shell can be expressed in a
traveling wave terms as (Zhang, 2002a):
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where Uns, Vns, and Wns are the displacement amplitudes in the z-,

j-, r-axis respectively, n is the circumferential mode number and
subscript s denotes a particular branch of the dispersion curve, kns

is the axial wavenumbers and o is the angular frequency.
By solving Eq. (2), the associated form of the acoustic pressure

can be expressed as:
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where Pns is the fluid acoustic pressure amplitude; kr
s and kns are

the radial and axial wavenumbers respectively, which have the

relation kr
s

� �2
¼ k2

f �k2
ns; kf is the free wave number, kf ¼o=cf ; Hð2Þn

is the nth Hankel function of the second order.
To ensure that the fluid remains in contact with the shell wall,

the fluid radial displacement and the shell radial displacement
must be equal at the interface of the shell outer wall and the fluid.
This coupling condition is then:
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By substituting Eqs. (3c) and (4) into Eq. (5), the fluid acoustic
pressure amplitude Pns can be obtained:
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Combining Eqs. (3), (4) and (6) with Eq. (1), the structure-
acoustic dispersion equation can be obtained:
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For nontrivial solution of Eq. (7), it is required that:

Det ½L�ð Þ ¼ 0 ð9Þ

which is the dispersion equation of the coupling system.
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Fig. 1. The coordinate system and the circumferential model.
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