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a b s t r a c t

Modern shipping activities are carried out via a highly sophisticated man–machine system within

which technological, social and environmental factors often contribute to the occurrence of human

failures. Due to the high risks caused by such failures, human reliability analysis (HRA) has always been

a serious concern in marine engineering safety. However, the problem of lack of data, together with the

complexity of marine engineers’ behaviour, has weakened the applicability of well-established HRA

methods (i.e., cognitive reliability and error analysis method (CREAM)) in the maritime context. This

paper proposes a modified CREAM to facilitate human reliability quantification in marine engineering

by incorporating fuzzy evidential reasoning and Bayesian inference logic. The core of the new method is

to use evidential reasoning to establish fuzzy IF–THEN rule bases with belief structures, and to employ

a Bayesian inference mechanism to aggregate all the rules associated with a marine engineer’s task for

estimating its failure probability. Consequently, the outcomes of this work can also provide safety

engineers with a transparent tool to realise the instant estimation of human reliability performance for

a specific scenario/task.

& 2012 Elsevier Ltd. All rights reserved.

1. Introduction

During the past decades, human activity has been the source of
ecological disasters, evidenced by accidents such as the ‘‘Three Mile
Island’’, ‘‘Chernobyl’’ and ‘‘Prestige’’ tragedies. The shipping industry
shares part of this responsibility with the fact that 80–85% of all the
recorded maritime accidents are directly due to human error or
associated with human error (Harati-Mokhtari et al., 2007). The
shipping community has therefore taken a series of measures in
order to minimise such events via international bodies like the
International Maritime Organization (IMO). They include the intro-
duction of Human Reliability Analysis (HRA) to the Formal Safety
Assessment (FSA). FSA was developed as a risk-based goal-setting
maritime safety rule-making methodology to address the inap-
propriate effectiveness of purely using a prescriptive approach to
make the regulations of attempting to reduce risks in ship design
and operation. However, effective implementation of such a mea-
sure is challenging given the difficulties of directly adopting the
mature HRA methods available in literature to the maritime
domain. For example, lack of historical data in general and human
failure statistics in particular is a well-recognised problem in
maritime safety research (Ren et al., 2008; Yang et al., 2010). More
importantly, traditional tasks onboard ships requiring much ‘doing’

are being replaced by more ‘thinking’ jobs with a nature of
higher contextual dependency where technological, social and envir-
onmental factors often contribute to a dynamic sea working environ-
ment in an interactive way. ‘Second generation’ HRA methods have
therefore been developed to overcome such difficulties by appro-
priately taking into account the contextual influence of a task and by
being equipped with the more powerful ability of incorporating
expert judgments to deliver quantitative human failure analysis
results. Although attractive, these methods have still exposed some
shortcomings in their practical application. For instance, the prospec-
tive quantification process of a Cognitive Reliability and Error Analysis
Method (CREAM), which normally produces an interval approxima-
tion analysis result, cannot provide an appraisal of the consequences
of human performance on maritime system safety which can be
further used in a FSA framework.

This paper therefore develops a human failure quantification
methodology by incorporating fuzzy logic, evidential reasoning and
Bayesian network techniques into the prospective analysis of CREAM.
It can be used either as a stand-alone method for human failure
screening or as part of an integrated method for the support of using
FSA in a large maritime system safety analysis. More specifically, the
new fuzzy Bayesian CREAM approach can be used by maritime safety
analysts (a) to identify the tasks that require human cognition and
depend on cognitive reliability, (b) to determine the conditions where
cognitive reliability may be reduced and therefore constitute a source
of risk (Hollnagel, 1998), (c) to provide a precise/point (instead of
interval) human failure rate estimation which can be used as input in
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FSA (Konstandinidou et al., 2006), (d) to improve the accuracy of
human failure probabilities through avoiding the loss of useful
information in classical fuzzy Max–Min inference operations and (e)
to realise the instant estimation of human failure probability for a
specific task. Given that (a) and (b) above have been addressed
through the well-known retrospective and prospective analysis in
CREAM, this study will focus on the investigation of (c) using fuzzy
logic, (d) using evidential reasoning and (e) using Bayesian inference.

To achieve the above aim, the research problem is formulated by
identifying the weaknesses of the traditional HRA approaches in
general and CREAM in specific in the ensuing section. In Section 3, a
generic human failure quantification methodology is developed to
overcome the problems of applying the traditional CREAM to
maritime HRA by integrating fuzzy evidential reasoning with
Bayesian logic. Its applicability and feasibility are demonstrated
by studying the case of seafarers’ performances in a maritime
emergency situation due to engine failures in Section 4. A sensitiv-
ity analysis is also conducted in this section to examine the
logicality of the new method and to show its superiority over the
classical fuzzy CREAM approaches. Section 5 concludes the research
with a discussion of potential future work.

2. Problems of using CREAM in quantifying maritime human
failures

Human work onboard ships can be characterised by a change
moving from ‘Tell me what to do’ to ‘Show me how to do it’ and then
to ‘Involve me in it’. The development of modern technology has
changed the nature of human work from being manual skills to being
mostly knowledge intensive functions and cognitive tasks such as
diagnosis, planning and problem solving. HRA methods have corre-
spondingly evolved, starting from the ‘first generation’ Technique for
Human Error Rate Prediction (THERP), passing through the ‘second
generation’ CREAM and arriving to A Technique for Human Error
ANAlysis (ATHEANA) (under development) (Konstandinidou et al.,
2006).

2.1. First generation HRA methods

The ‘first generation’ HRA methods are developed based on the
pivotal concept of human error mainly resulting from the inherent
deficiencies of humans (Marseguerra et al., 2006), including task-
based THERP, response time-based Operator Action Tree (OAT),
Human Cognitive Reliability (HCR) analysis, expert judgement-
based TESEO (Tecnica Empirica Stima Errori Operatori), Human Error
Assessment and Reduction Technique (HEART) and Success Like-
lihood Index Methodology (SLIM), etc. (Kim and Bishu, 2006). Human
error probability (HEP) is treated as the conventional probability
which is often used to describe the failure likelihood of pure
hardware like mechanical and structural systems. Such an argument
has however been challenged over the past 20 years because
extensive studies of human performance in accidents have shown
the importance of the contextual conditions in which the task is
performed is greater than the characteristics of the task itself
(Marseguerra et al., 2006). From this evidence, the criticism of the
‘first generation’ approaches are that it has generally recognised
shortcomings in a scarcity of data, lack of consistency in treating error
of commission, inadequate proof of accuracy, inadequate psycholo-
gical realism, insufficient treatment of performance shaping factors
(PSFs), inadequate treatment of dynamic situations, a mechanical
view of human, high level of uncertainty, lack of systematic task
analysis structure and inadequate error reduction strategies
(Hollnagel, 1998; Kim and Bishu, 2006). Quantitative comparisons
among some classical HRA methods are also analysed by He et al.
(2005), which indicates the superiority of the ‘second generation’ HRA

methods over the ‘first generation’ ones, when the behavioural rather
than cognitive focus is mainly concerned.

2.2. Second generation HRA methods

For developing a new HRA paradigm, issues such as the
probabilistic approach of human behaviour to risk analysis, cogni-
tive model complexity, integration of PSF and model validation
have been raised as critical points. In order to address the needs
identified, a considerable amount of effort has been devoted to
propose alternative ‘second generation’ HRA methods including the
COGnitive evENT tree system (COGENT), Human Interaction Time-
LINE (HITLINE), ATHEANA, Connectionism Assessment of Human
Reliability (CAHR), CREAM, etc. As one of the best known ‘second
generation’ HRA methods, CREAM presents a consistent error
classification system that integrates individual, technological and
organisational factors. The classification describes the relations
between causes and effects by defining a number of sub-groups
and tables, which are provided for the error modes on the one hand
and the organisational causes on the other. To model the causal
relations, the CREAM methodology has been derived from its core,
the Contextual Control Model (COCOM). COCOM focuses on the
principle that human performance is the outcome of the purposive
use of competence adjusted to specific working conditions rather
than of the pre-determined sequence of response to given events.
The model therefore defines four characteristic control modes
according to the human cognition and action context, which are
determined by nine Common Performance Conditions (CPCs). The
four control modes, namely ‘‘Scrambled’’, ‘‘Opportunistic’’, ‘‘Tacti-
cal’’ and ‘‘Strategic’’, are linked with different failure probability
intervals representing human action failure probabilities. The nine
CPCs are ‘‘adequacy of organisation (]1)’’, ‘‘working conditions
(]2)’’, ‘‘adequacy of man–machine interface and operational support
(]3)’’, ‘‘availability of procedures and plans (]4)’’, ‘‘number of
simultaneous goals (]5)’’, ‘‘available time (]6)’’, ‘‘time of day (]7)’’,
‘‘adequacy of training and experience (]8)’’ and ‘‘crew collaboration
quality (]9)’’. Appropriate linguistic variables chosen to describe the
nine CPCs are categorised into three sets in terms of their effects
(positive, negative or neutral) on human performance reliability
(Table 1). Having given the classification and COCOM, CREAM can
be used to conduct its bi-directional HRA inference, retrospective
analysis and prospective analysis (Hollnagel, 1998).

2.3. Problem analysis of CREAM

One of the purposes of prospective analysis is to provide quanti-
fication of human performance reliability. CREAM approaches the
quantification in two steps by providing a basic and an extended
method (He et al., 2008). The basic CREAM method corresponds to
initial screening of the task and its major segments through calculat-
ing the distinct sums of the positive and negative influencing CPCs to
determine the relevant control mode and failure rate interval.
However, the failure rate intervals from the basic method appear to
be too wide even for the use in screening (Fujita and Hollnagel, 2004).
It is also difficult to further use such failure rate intervals in the FSA
framework. The extended method uses the output from the basic
CREAM and appropriate data sources to calculate the probability of
each cognitive function failure and to deal with the tasks needing
more precision and detail (Hollnagel, 1998). Lack of the critical mass
in statistical failure data, however, proves the tasks of adapting the
extended method in the maritime area to be challenging and the
generation of novel methods to be urgent. Recently, new quantifica-
tion approaches for CREAM have been proposed using fuzzy logic
(Konstandinidou et al., 2006; Kim and Bishu, 2006). While the
methods provide a systematic procedure to account for the ambi-
guity in the quantification of CPCs for calculating specific numerical
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