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a b s t r a c t

There is no secondary flow in a boundary layer where streamlines coincide with the surface geodesic

curves and earlier this coincidence was mathematically proven for constant pressure surfaces in ideal

incompressible fluid. Two 3D inverse problems on determination of such surfaces are solved here:

Design of a surface between the given body bow and an initially undetermined body cylindrical central

part; Fitting such a surface with an initially undetermined bow to the given body cylindrical part.

& 2012 Elsevier Ltd. All rights reserved.

1. Introduction

There are two kinds of streamlines around three-dimensional
bodies (like hulls of ships): streamlines over the body surface and
streamlines of inviscid flow surrounding the body boundary layer.
It is possible to connect these streamlines by the normal to the
body surface and then find out that there is usually an angle
between these streamlines. Thus, there is a flow component
perpendicular to them (a secondary flow) within the boundary
layers, it is illustrated in Fig. 1. Besides the energy losses
associated with their generation, the secondary flow undesirable
effects include a significant non-uniformity of the body wake
flow.

There is a possibility to mitigate these undesirable effects.
As known since the 1950s and later recalled by Schlichting and
Gersten (1999), the 3D boundary layers without secondary flows
can exist over a special kind of 3D surfaces. There is no secondary
flow where the inviscid flow streamlines coincide with the sur-
face geodesic curves. As was also noted by Birkhoff and
Zarantonelo (1957), such coincidence is mathematically proven
for surfaces with the constant pressure in steady flows of ideal
incompressible fluid. There was no example of such surface/body
in Birkhoff and Zarantonelo (1957), but during the following
decades, various numerical methods for determination of 3D
constant pressure surfaces have been developed by Street
(1977), Amromin et al. (1989) and by others later. Nevertheless,
there have been no known attempts to analyze the general
characteristics of such surfaces and their potential applicability
to engineering. For making such attempt practical, it is also

important to take into account the design requests inherent, for
example, to airplanes and ships: The necessity for a convenient
cargo location and size limitations. Because of this, such bodies
often have cylindrical middle parts. Therefore, only the body
edges (the bow and stern) can be allowed for fitting their shapes
to the pressure constancy condition.

This paper presents several examples of the forward edges
(bow) designed with the constant pressure over their surfaces.
There is no consideration of sterns because the described fitting
method is based on the ideal fluid theory. Its employment for
sterns with their thick boundary layers would be less confident.

1.1. Method to determine 3D constant pressure surfaces in ideal

fluid

Determination of a 3D flow with a constant pressure on the
surface can be carried out by solving the following boundary-
value problem for the velocity potential:

DF¼ 0 ð1Þ

@F=@N9S ¼ 0 ð2Þ

U2
�19Sb

¼ 2ðP1�PbÞ=rU2
¼ const ð3Þ

A flow scheme is presented in Fig. 2.
The surface S* is considered as an approach to Sb. For solving

such a nonlinear problem, there are three consecutive steps in the
iterative algorithm developed herein:

1. The first step is solving the linear forward problem of deter-
mining the potential flow around the known (tried) boundary
that includes the known parts of the body surface and an
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approach to its undetermined part. This step involves Eqs.
(1) and (2) only and can be solved by the Hess and Smith
(1967) method, for example.

2. Its second step is correction of this undetermined part by
solving a linear inverse potential problem. The assumption
9(CPb�CP)/(1þCP)951 for the initial surface results also into
the following inequities:

9h=l951; 9ðN,N*Þ�1951 ð4Þ

Here parenthesis with two vectors means their scalar product.
Since inequalities (4) are satisfied, the perturbation technique
can be applied to the nonlinear problem with Eqs. (1) and (3).
The pressure in Eq. (3) must be calculated through
rFUrF¼(@F/qN)2

þ(@F/qt)2
þ(@F/qP)2. The potential deriva-

tives by unknown directions can be represented through its
derivatives by known directions

@F=@N¼ @F=@N*ðN,N*Þþ@F=@T*ðN,T*Þþ@F=@P*ðN,P*Þ;

@F=@t¼ @F=@N*ðt,N*Þþ@F=@T*ðt,T*Þþ@F=@P*ðt,P*Þ;

@F=@P¼ @F=@N*ðP,N*Þþ@F=@T*ðP,T*Þþ@F=@P*ðP,P*Þ:

Here P¼N� t, (N�N*,T*)¼�@h/@T. Taking into account Eq. (4),

and omitting second order terms, one can rewrite these
derivatives as @F/@N¼@F/@N*�@F/@T*@h/@T*, @F/@t¼�@F/
@N*@h/@T*þ@F/@T*.In any iteration the potential derivatives
on the corrected surface can be linearly extrapolated from its
preliminary shape. Then

@F=@N*¼ @F=@N*fS*þ@j=@N*fS*gþh@2F=@N*2
fS*g;

@F=@T*¼ @F=@T*fS*gþ@j=@T*fS*gþh@2F=@N*@T*fS*g:

Taking into account Eqs. (1) and (2) on S*, one can rewrite
these derivatives on S as @F/@N¼@j/@N*þU@h/@T*; @F/

@t¼�Uþ@j/@T*�hkU. Here jfq,Scg ¼ ð1=4pÞ
RR

Sc
ðq=rÞdS, r¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðx�x*Þ2þðy�y*Þ2þðz�z*Þ2
q

, the point {x*,y*,z*} is located on

S*, k is the curvature of Sb, Thus, used for the surface correction
Eqs. (2) and (3) can be transformed into

@j
@N*
¼�

@

@T*
hU* ð5Þ

U*
@j
@T*
�U*2 khþ

1

2

� �
þ

1

2
¼�

CPb

2
ð6Þ

The function h found from Eqs. (5) and (6) is employed to
correct Sc before the next iteration, but these equations are not
applicable to a small vicinity of the obstacle, where k cannot
be assumed small. The special asymptotic (Gurevich, 1970) for
h in this vicinity is employed and matched with the solution of
Eqs. (5) and (6) out of this vicinity. For the simplification of
computations, it is useful to keep in mind that

@j
@T*
ðtÞ ¼

1

2p

Z TT

0

qðtÞdt

t�t
þj*ðq,x,y,zÞ

where the first term in the right-hand side is the integral Cauchy
defined on a 2D contour, but the function j* has no singularity.
Therefore Eq. (6) is solved with the inversion (Gakhov, 1966) of
this integral.The leading edge of the surface S* must be defined
with some criterion independent on Eqs. (1) and (3). This edge
may be a given line, but for smooth body surfaces, the Brilluin–
Villa condition is often used. This condition requires continuity of
the streamline curvature (Birkhoff and Zarantonelo, 1957), but
for computations, it is more convenient to use the condition
consequence and lay this edge along the points of local pressure

Nomenclature

B horizontal dimension of obstacle
CP dimensionless pressure coefficient
CPb CP value on the bow
h distance between surface-solution and S* counted

along N*
N normal to S

N* normal to the tried surface S*
PN ambient pressure
S combination of all boundaries of the flow

Sb a constant-pressure part of S

q supposedly small intensity of sources
T a half of vertical dimension of obstacle
T* tangent to the meridian section of S*
U 9grad (F)9
U* value of U obtained from the solution of the forward

problem
s �CPb

F velocity potential
j perturbation of the potential F

Fig. 1. Typical velocity distribution in a 3D boundary layer with a secondary flow

along the z-axis.

Fig. 2. Flow scheme (in the left) and comparison of its boundaries iteratively changed during solving of the boundary-value problem (1)–(3) (in the right).
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