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a b s t r a c t

This paper starts by introducing extreme wave height analysis using quantile functions, which are an

alternative to the classical approaches to model long term maxima or extreme values. The long-term

distribution of significant wave heights from four locations are modelled with Davies, 3-parameter

Weibull, generalized extreme value (GEV) and generalized Pareto (GP3) quantile functions. Even though

the 3-parameter Weibull and GP3 quantile functions are adequate wave height models in this study, the

performance of the Davies quantile function for extreme wave analysis seems to be consistently good

both temporally and spatially.

& 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Ocean sea surface wave climatology is of vital importance in all
enhancement and exploratory activities that include coastal and
offshore engineering, defence, navigation, fishing and ocean mining.
The intensity of the sea states is characterized by their significant
wave height and this is the reference parameter used in long term
distributions and in the prediction of extreme values. Typically this
is represented by a probability distribution function F(x) or equiva-
lently the probability density function f(x) of the random variable X

that is assumed to represent the significant wave heights.
The initial approaches used visual observations (Guedes Soares,

1986), which was the data generally available in earlier stages and
at later phases measured data by wave rider buoys became avail-
able. The traditional approach to determine extreme values of
significant wave height has been to model the initial distribution,
often by a Weibull distribution (Isaacson and Mackenzie, 1981; Muir
and El Shaarawi, 1986), although other models have been used
(Ferreira and Guedes Soares, 1999; Stefanakos, 1999; Lopatoukhin
et al., 2001; Stefanakos and Athanassoulis, 2006), leading to a large
modelling uncertainty in the predictions (Guedes Soares and Scotto,

2001) as compared with the statistical one (Guedes Soares and
Henriques, 1996).

As a better alternative to using the initial distribution method,
extreme value distributions have been used sometimes associated
with the peak-over-threshold method (Van Vledder et al., 1993;
Ferreira and Guedes Soares, 1998), which can be generalized to
include more observations so as to increase its robustness (Sobey
and Orloff, 1995; Guedes Soares and Scotto, 2004). When using only
data larger than a high threshold, one normally deals with inde-
pendent observations as the correlation between successive obser-
vations is reduced, although there may still occur some clustering as
a result of a storm, in which more than one exceedance occurs.

One way to deal with this problem is to use storm models, which
were initially proposed by Petruaskas and Aagaard (1971). A more
recent approach is the Equivalent Triangular Storm model, proposed
by Arena and Pavone (2009) and Fedele and Arena (2010).

An alternative to increase robustness is to adopt non-para-
metric descriptions such as the kernel of the distributions, which
can be done whenever there is a sizable amount of data available.
This has been proposed for univariate distributions by Ferreira
and Guedes Soares (2000) and by Athanassoulis and Belibassakis
(2002), and for bivariate distributions of significant wave height
and mean period by Ferreira and Guedes Soares (2002).

An alternative towards having robust models is to use the
quantile function Q (p) which is the inverse of the cumulative
distribution function that shares equivalent properties with F(x),
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where x is a particular value of the wave height random variable
X. The present paper examines the usefulness of the quantile
functions in modelling long term data of significant wave heights.

The advantages of the quantile function approach are several.
The properties of Q(p) like (i) the sum of two quantile functions
(the product of two positive quantile functions) is again a quantile
function (ii) the reciprocal of X is distributed as (Q(1�p))�1,
(iii) for a non-decreasing function H(p) with H (0)¼0, H (1)¼1,
Q(H(p)) is again a quantile function over the same range of Q (p)
etc. are not shared by F (x) (Gilchrist, 2000). Various character-
istics of the distribution like location, dispersion, skewness and
kurtosis can be directly derived from Q (p), whereas the use of f

(x) requires integration of functions to derive such quantities. In
many model estimation procedures, sample moments and their
functions are used as the estimates. The non-robustness of these
statistics, their susceptibility to extreme observations, instability to
match the corresponding population values are some of the pro-
blems in the conventional methods. This can be reduced to a marked
extent by adopting quantile based methods (Gilchrist, 1997, 2000).

Of particular interest in the quantile function approach is the
family of models known by the general name; lambda distributions
involving several parameters that express x as a some simple
function of p. Such models have been successfully employed in
several problems, e.g., hydrology (Houghton, 1978), process control
(Gilchrist, 1997), reliability (Gilchrist, 2000), air pollution (Okur,
1988), finance (Mc Nichols, 1987), climate studies (Abouammoh and
Osturk, 1987) and inventory modeling (Nahmriss, 1994).

Lambda distributions form a highly flexible family of distribu-
tions capable of representing many of the known distributions in
statistical literature either exactly or approximately (Gilchrist,
2000). Lambda distributions are particularly useful in situations
where the choice of a relevant model is difficult on the basis of the
physical conditions that govern the phenomenon and different
forms of F(x) are prescribed under different conditions. In such
cases, a single form of lambda distribution can be found as a
satisfactory fit by varying the parameter values. This enables
subsequent analyses under a unified framework.

Muraleedharan et al. (2009) conducted an initial and explora-
tory study at the application of quantile functions to wave
data. They simulated the long-term distribution of daily max-
imum shallow water wave heights, including rough sea and swell
dominated southwest monsoon (active weather condition) season
(May to October), spread over a period of 5 years (1980–1984) off
Valiathura, southwest coast of India. They adopted a 2-parameter
tuning coefficient incorporated modified Weibull (Muraleedharan
et al., 2007) a general Weibull, a truncated Gumbel (up to x¼0 for
non-negative wave height data), a 3-parameter generalized Par-
eto, Rayleigh and Davies distribution and compared their perfor-
mance. The Davies quantile function was competitive to other
models and the various estimated wave height statistics using
quantile function were in good agreement with computed values
from the data.

This study is a continuation of the previous work and applies
that type of approach to a larger number of ocean sites and is not
restricted to data from the Indian Ocean.

The 44 years North Atlantic Ocean daily maximum hindcast
significant wave height distributions off Azores, Figueira da Foz
and Sines calculated in the European Project HIPOCAS (Guedes
Soares, 2008) are modelled by three parameter quantile functions
of Weibull, generalized extreme value, generalized Pareto and
Davies quantile function analysis. The hindcast data produced has
been validated with buoy data (Pilar et al., 2008), although no
specific study has been made of their performance in modelling
extremes. Therefore the use of the data in this paper aims at
demonstrating the method proposed and not at determining
specific extreme values at a given location.

In order to determine the applicability of the functions on
oceanic regions of different wave characteristics, the 3-hour
recorded significant wave height distributions off Machilipatnam
in the Bay of Bengal (1997–2005) are also modelled and subjected
to extreme wave analysis.

The paper is organized into four sections. In Section 2, the
basic properties of the model required in the sequel are discussed.
Analysis and discussion of results on the most widely used
3-parameter Weibull, generalized extreme value (GEV), and gen-
eralized Pareto (GP3) for wave height distribution and Davies QF,
in respect of the significant wave heights; extreme wave heights
and their return periods are presented in Section 3. The study is
concluded in Section 4 with discussions on the models and the
derived wave parameters.

2. Quantile function models

2.1. Quantile function approach

The quantile function at a probability level p is defined as

Q ðpÞ ¼ F�1
ðpÞ ¼ inf x : FðxÞZp

� �
, 0rpr1 ð1Þ

One of the quantile functions or lambda distributions in
common use is the symmetric form Tukey (1960):

Q pð Þ ¼ lþ
Z
a

pa� 1�pð Þ
a� �

, 0rpr1 ð2Þ

where l, Z and a are the location, scale and shape parameters.
Another form of the quantile functions or lambda distributions

is the Ramberg and Schmeiser (1974) model:

Q pð Þ ¼ lþZ½pa� 1�pð Þ
b
� ð3Þ

where l and Z, are the location and scale parameters and a and b
are shape parameters.

This latter one contains four parameters and its modification
by Freimer et al. (1988) is

Q pð Þ ¼ lþZ pa�1

a
�

1�pð Þ
b
�1

b

" #
ð4Þ

In the present paper, a simple model called Davies distribution
is adopted:

x¼ Q ðpÞ ¼
Cpl1

1�pð Þ
l2
; C, l1, l240, 0rpo1 ð5Þ

where C is a scale parameter and l1 and l2 are shape parameters.
This distribution, introduced by Hankin and Lee (2006) is also
proposed along with the extreme value distributions: 3-para-
meter Weibull, the generalized extreme value (GEV) and the
3-parameter generalized Pareto to represent the distribution of
wave heights and is applied to real data for further analyses.

2.2. The model and its properties

The derivative of Q (p) is called the quantile density function
denoted by q (p) which is directly related to the density function
f (x) as

qðpÞ ¼
dQðpÞ

dp
¼

dx

dp
¼

1

f ðxÞ

since FðxÞ ¼ p, then
dx

dp
¼

1

f ðxÞ
ð6Þ

Thus the moments of the distribution can be found from

m0r ¼
Z 1

0
xrf ðxÞdx¼

Z 1

0
Q pð Þ½ �

rdp
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