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a b s t r a c t

A numerical model is built by using an improved VOF method coupled with an incompressible Navier–

Stokes solver. Exploiting the model, the freak wave formation due to the dispersive focusing mechanism

is investigated numerically without uneven bottoms and in presence of uneven bottoms. During the freak

wave transformation over an uneven bottom in finite water, combined effects of shoaling, refraction and

reflection can modify the external characteristics of freak waves, and also can complicate the energy

transfers. Furthermore, wavelet analysis method is adopted to analyze the behavior of the instantaneous

energy structure of freak waves. It is found that when the bottoms vary in height, the external

characteristic parameters and high frequency energy show a similar trend, but the value may be quite

different due to the difference in local characteristic of the bottom.

& 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Freak wave is a type of extremely large transient water wave,
being close to breaking and of asymmetry in both vertical and
horizontal direction. In the time-frequency spectrum of freak
waves, strong energy density is instantly surged and seemingly
carried over to the high frequency components at the instant the
freak wave occurs (Liu and Mori, 2000), therefore severe damages
to vessels, maritime structures and other facilities in the ocean are
usually caused. Such waves have been observed in a large number
of basins around the world, in deep or shallow waters, with or
without currents (Kharif and Pelinovsky, 2003; Lopatoukhin and
Boukhanovsky, 2004; Monbaliu and Toffoli, 2003), and the popular
Rayleigh distribution cannot precisely predict the probability of
occurrence of freak waves due to the non-linear effects (Stansell,
2004, 2005; Chien et al., 2002).

The previous studies have shown that several mechanisms
have been suggested to explain the formation of freak waves in
various environments. Among them one can mention the dispersive
focusing, wave–current interaction, atmospheric forcing, spatial
(geometrical) focusing, non-linear self-focusing of wave energy,
and non-linear wave–wave interaction (Chien et al., 2002; Kharif
and Pelinovsky, 2003; Lopatoukhin and Boukhanovsky, 2004).

Wu and Yao (2004) reported the results of laboratory mea-
surements on limiting freak waves in the presence of currents. It
is found that strong opposing currents inducing partial wave
blocking significantly elevate the limiting steepness and asym-
metry of freak waves.

Touboul et al. (2006) experimentally and numerically investi-
gated the direct effect of the wind on a freak wave event
generated by means of a dispersive focusing mechanism. The
results suggest that the duration of the freak wave event increases
with the wind velocity, and the point where the waves merge has
a shift in the downstream direction, which is due to the action of
the current induced by the wind.

Peterson et al. (2003) presented that non-linear interactions of
solitonic waves in the framework of the Kadomtsev–Petviashvili
equation may result in particularly high and steep waves resem-
bling the freak waves, and it may be a generic source of freak
waves in areas of moderate depth.

Overall, these studies have provided us a good understanding
to the influences on the external characteristics of freak waves.
However, insight into the internal structure of freak waves plays
an important role in interpreting the physical mechanism. Walker
et al. (2004) investigated the non-linear characteristics of freak
waves based on Fourier power spectrum. It is found that the
field data exhibits an anomalous set-up for the New Year
wave, whereas all the other large waves show a local set-down.
The conventional Fourier method has provided substantial insight
into freak wave phenomena, but the Fourier power spectrum, as a
time-averaged description of wave energy, is inappropriate for
characterizing non-stationary signals. Wavelet method has been
proven to be a powerful tool for analyzing localized variations of
power within a time series. By decomposing a time series into
time-frequency space, one is able to determine both the dominant
modes of variability and how those modes vary in time. By using
this method, the analysis on time-frequency energy spectrum of
simulated and field observed freak waves has been presented by
the authors (Cherneva and Soares, 2008; Chien et al., 2002; Cui
and Zhang, 2011; Mori et al., 2002). It is found that a well-defined
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freak wave can be readily identified from the wavelet spectrum
where strong energy density in the spectrum is instantly surged
and seemingly carried over to the high frequency components at
the instant the freak wave occurs. Wavelet analysis method has
better performance than the popular Fourier technique.

One believes that the bottom topography plays important role
in modifying wave form and propagation. During the wave trans-
formation from the deep-water to shallow-water over uneven
bottoms, combined effects of shoaling, refraction, diffraction, and
reflection can result in bending, overturning and breaking waves
(Biausser et al., 2003; Choi and Wu, 2006; Grilli et al., 2001).
In addition, spatial (geometrical) focusing is one of the possible
physical mechanisms of freak waves. To our knowledge, the
internal features and evolution behavior of freak waves in pre-
sence of uneven bottoms need further examination.

In this paper, a numerical model is built by using an improved
VOF method (Ren and Wang, 2004) and the governing equations
are the Reynolds-averaged N–S (RANS) equations, closed by
the two-equation k–e turbulence model. The component waves
focusing method is adopted for freak wave formation, which is
achieved through using a wave-maker to generate waves at one
extremity of the numerical tank and the motion of the wave-
maker is prescribed according to an improved superposition
model (Kriebel, 2000). The uneven bottoms can be characterized
by including a partial bottom-cell treatment. By using the current
model, freak waves without uneven bottoms and in presence of
slope and curved topography have been simulated to analyze
the effects of the uneven bottoms on the external features and
internal energy structure of freak waves.

2. Mathematical model

2.1. Governing equations

When freak waves propagate over uneven bottoms, they may
break with turbulent fluctuation of the water particles due to the
wave–bottom interaction, which must be accounted for by proper
turbulence model. Therefore, the two-dimensional continuity
equation and the Reynolds-averaged N–S equations are used
as the governing equations, closed by the two-equation k–e
turbulence model.

Continuity equation:
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Two-equation k – e turbulence model:
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where, u and u are velocity components in x- and y-directions,
respectively; y is the partial-cell parameter, which is independent
of time and has a value between 0 and 1 depending on whether
the point is inside an obstacle or in the fluid; p is the pressure; r
is the fluid density; g is the gravitational acceleration; v is the
coefficient of kinematic viscosity; vt¼Cu (k2/e) is the coefficient of
turbulent viscosity; k is the turbulent kinetic energy; e is the
turbulent kinetic energy dissipation rate; Cu, sk, se, Ce1 and Ce2 are
the empirical constants recommended in the literature (Rodi,
1993). In this work, the following standard values are used: Cu¼

0.09, sk¼1.0, se¼1.3, Ce1¼1.43, Ce2¼1.92.

2.2. Numerical method

The VOF method is known for its capacity to simulate free
surface flow. This is made possible by means of a fluid fraction
F(x, y, t), which has a value between zero and unity, representing
the volume fraction of a cell occupied by fluid. Thus, a cell full of
fluid is reflected by F¼1, while an empty cell will have F¼0. A cell
that is either intersected by a free surface or contains voids will be
partially filled with fluid and has a value of F between zero and
unity. Furthermore, a free surface cell can be identified being a
cell with a non-zero F and having at least one neighboring cell
where F¼0. The time variation of this function is governed by
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The variables are solved for from a finite-difference approx-
imation of the governing equations. On the discretization of
the advection items, a third-order upwind scheme is used when
dealing with inner points, and a hybrid scheme combining first-
order upwind and second-order central differences is used when
dealing with boundary points. The second-order central differ-
ence scheme is used for the viscous terms (Ren and Wang, 2004).
The solution algorithm as detailed in the original VOF method is
employed (Hirt and Nichols, 1981).

This method allows for simulation of breaking and post-
breaking waves (Biausser et al., 2003) as well as steep waves that
have high velocity near the surface (freak waves).

2.3. Boundary conditions

2.3.1. Boundary conditions for the freak wave-maker

The improved superposition model is used to generate freak
waves. In the model, an extreme transient wave is embedded into
a random wave train, based on a partitioning of the total wave
energy with one part of the energy going into the underlying
random sea and the other into the focused transient wave (Kriebel,
2000).

The model can be expressed as

Zðx,tÞ ¼ Z1ðx,tÞþZ2ðx,tÞ ¼
XM
i ¼ 1

a1icosðkix�oi*tþeiÞ

þ
XM
i ¼ 1

a2icos½kiðx�xcÞ�oi*ðt�tcÞ� ð7Þ

where Z is the surface elevation at a distance x from the wave
generator in the wave tank; M is the number of component wave;
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