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The optimization of simulated moving bed systems is a complex task, and one of the difficulties is the
lack of simulation methods that are sufficiently accurate and fast to be incorporated in the optimization
algorithms. This paper presents a simulation of an adsorption column with finite differences based on
a Lagrangian approach. The results obtained with this integration method were compared to values
reported in the literature; the comparison shows that the accuracy of the integration method is not
lower than that obtained with published methods and that this integration method requires a much lower

Is(lev[yl\;/vords: cost in computation time. Various simulations were compared with experimental data for injections of
Preparative chromatography caffeine and sodium 2—naphthal.ene§ulf0'nate and V\l.lth published results for the separation of isomers
Simulation of omeprazole. The effects of axial diffusion and resistance to mass transfer on the elution curves were

Lagrangian finite differences studied, and the simulation results were compared with the known theoretical analytical solution for a

linear isotherm.

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Optimization of the working parameters of simulated mov-
ing bed (SMB) separators is still a challenging issue. Because SMB
reaches a cyclic steady state (CSS), not a constant one, and because
many variables are involved, this task is complex (Grosfils, Levrie,
& Kinnaert, 2007; Kawajiri & Biegler, 2006; Kim, Lee, & Lee, 2010;
Sempere et al., 2010). Nevertheless, this issue has recently been
the subject of a wide variety of studies. Most of the studies are
based on the analysis of the analogous true moving bed (TMB) sys-
tem through the so-called “standing wave analysis” (Buhlert, Lehr,
& Jungbauer, 2009; Cauley, Cauley, & Wang, 2008; Djohari & Carr,
2005; Lee, Mun, Cauley, Cox, & Wang, 2006; Ma & Wang, 1997)
or through “equilibrium theory” (Mazzotti, 2006a, 2006b, 2006c;
Migliorini, Gentilini, Mazzotti, & Morbidelli, 1999; Sempere et al.,
2008). These methods converge to an optimal theoretical solution
(Cauley et al., 2004) based on an analysis of the velocities of the
concentration fronts through the adsorption column. This analysis
allows a set of working parameters at ideal conditions to be calcu-
lated rapidly, but the assumption of ideal conditions implies a lack
of accuracy that depends on the importance of non-idealities in the
system considered.

Optimization methods can be grouped into two families (Liibke,
Seidel-Morgenstern, & Tobiska, 2007). One family consists of the
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direct calculation of the CSS of the system after both space and
time are discretized along an entire period and forces the dis-
placed periodicity of the solution (Rodrigues, Silva, & Mota, 2010;
Toumi, Engell, Diehl, Bock, & Schléder, 2007). In contrast, direct
methods consist of the sequential simulation of every column and
include the corresponding material balances in the connecting
nodes (Diinnebier and Klatt, 2000; Strube & Schmidt-Traub, 1998).
This last perspective is a true simulation of the SMB and passes
through all of the different transient states up to the CSS. This strat-
egy also allows changes in working conditions to be simulated. The
problem with this type of method is the computational cost of the
sequential simulation, which is repeated until the CSS is reached
each time the objective function is evaluated. The usual simulation
techniques are often too time-consuming to allow such a strat-
egy. Therefore, it is interesting to find new ways to perform such
simulations.

The numerical techniques used most often to simulate adsorp-
tion and ion-exchange columns are the finite difference (FD)
approach (Djohari & Carr, 2005; Ma & Guiochon, 1990), the method
of lines (MoL) (Montesinos-Cisneros et al., 2010; Vande Wouwer,
Saucez, & Schiesser, 2004) and the orthogonal collocation on finite
elements (FE) approach (Asnin, Kaczmarski, & Guiochon, 2007; Kim
etal, 2010; Li, Wei, Shen, Ren, & Wu, 2006; Rodrigues et al., 2010;
Toumi et al., 2007; Wang & Ching, 2003). The last method gener-
ally offers greater precision than the others, especially when the
boundary conditions of the simulation are not easily achieved. This
situation occurs when it is necessary to simulate the movement of
“shock waves” of concentration in a system with high diffusion or
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Nomenclature

c concentration in mobile phase
Cinj concentration of the sample injected
D axial diffusion coefficient

F volume ratio=(1-¢)/¢e

k mass transfer coefficient

L column length

Pe Péclet number

q concentration in stationary phase
Q volumetric flow

St Stanton number

duration of injection pulse
interstitial velocity
concentration wave velocity
adimensional space
adimensional concentration
total void fraction
adimensional time

4O N g 5

mass transfer coefficients. However, this case is very often unavoid-
able in chromatographic columns. In numerical simulations, those
characteristics easily cause numerical instability. Because of the
steepness of the concentration profiles, the number of mesh points
plays an important role in the accuracy of the solution and in the
computation time. Avoiding instabilities usually requires smooth-
ing the solution or using very narrow or adaptive meshes; these
meshes imply a computation time that is too long. Alternatively,
the average CSS concentrations of the extract and the raffinate
of the SMB can be overestimated or underestimated because of a
small number of mesh points (Lim & Jorgensen, 2004). Salgado and
Aranda (2007) affirm that no integration method has yet succeeded
in all cases (high and low mass resistance, and strong and weak dif-
fusion) and that a compromise must be achieved between accuracy
and computation time.

In previous work (Menacho et al., 2011), a method to solve the
chromatographic model with mass transfer, but without diffusion
effects, was studied. The low computational cost of the method
was confirmed, especially when this cost was compared to that of
orthogonal collocation on finite elements. The improvement was
60-90% in the studied cases.

The aim of this work is to test the performance of this numer-
ical scheme when it is extended to simulate adsorption columns
with mass transfer and axial diffusion effects; thereby achieving a
good precision with a computation time low enough to allow use of
the scheme in direct optimization. This method takes a perspective
that converges with the method proposed by Salgado and Aranda
(2007), which was formulated as an agent-based procedure. The
method is based on changing the direction of the integration mesh
for the fluid phase as a type of Lagrangian formulation on finite
differences (LFD). The simulation results are compared to those
obtained by the other usual methods, and this comparison estab-
lishes the precision and computational costs of this method. The
simulations are also validated by comparing their results with data
from experiments and from published literature.

2. Modeling
2.1. Mathematical model and integration scheme

There are several mathematical approaches to express the mass
balance in a separation column, and these approaches depend
on the hypothesis that is assumed. The simplest model is named
the equilibrium ideal model; in this model, phase equilibrium is

assumed, and no diffusion occurs. The mass balance under these
conditions is

ac aq dc
&"FF&%—Ua—O (1)
q=f(c)

where g and c are the concentrations of the species in the liquid
and solid phases, respectively. F is the phase volume ratio, and f{c)
is the adsorption isotherm. Because:
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The system of equations can be written
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The first equation is a simple wave propagation. A change of
variables can be performed:

r=x-—wt

{ o
s=t

where w = 71#:”@

Thus, the first equation becomes:

ac
=0 (5)
The solution is a function: c(r, s)=¢(r)

c(x, £) = p(x — wt) (6)

This solution means that the concentration is constant along the
characteristic lines x —wt=constant in the x-t plane. Thus, the
concentration profile along the column behaves similarly to a con-
centration wave that moves along the column with a velocity w.
For linear isotherms, the velocity w is constant; therefore, the pulse
injected at the inlet moves along the column at a constant speed
and exits without a change in shape.

The solution of the equilibrium ideal model is interesting
because more sophisticated and realistic models can be regarded
as variations of this model that incorporate the effects of non-
idealities.

The transport diffusion model (TDM) is a very usual non-ideal
model; it assumes that there is a uniform concentration in the
radial dimension, molecular diffusion in the axial direction, and
mass transfer caused by a linear driving force
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where geq;=fi(C1,....Cn) is the equilibrium concentration of the
ith species in the stationary phase and depends directly on the
isotherm, D and k are the diffusion and mass transfer effective
coefficients, u is the interstitial velocity, and F is the phase volume
ratio. The set of equations expresses the mass balance of both the
mobile and stationary phases.

Inspired by the solution for the equilibrium ideal model, a
change of coordinates for the first equation is proposed.
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