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a b s t r a c t

An exact analytic solution to the modified mild-slope equation (MMSE) in terms of Taylor series for

waves propagating over an asymmetrical trench with various shapes is given. Because of the use of the

MMSE, on one hand, the present analytic solution can be valid in the whole wave range from long

waves to short waves, which is clearly superior to all previous long-wave analytic solutions; on the

other hand, the present analytic solution can get rid of the limitation of the ‘mild slope’ assumption and

be valid for bottom slope as high as 1:1. It is clarified that the improvement in solution accuracy by

using the mass-conserving matching condition against the conventional matching condition mainly

depends upon the jump quantities at all common boundaries. In addition, in comparison with previous

approximate analytic model based on the approximate mild-slope equation, the present model is more

accurate and can converge in the whole trench region without any restriction to trench depth. Based on

the present MMSE solution, influence of trench dimensions to reflection effect is analyzed, which shows

that total reflection effect increases when trench wall becomes steep and the phenomenon of zero

reflection mainly occurs for symmetrical trenches.

& 2012 Elsevier Ltd. All rights reserved.

1. Introduction

It is well-known that the most popular wave equation in the
linear wave regime is the mild-slope equation (MSE), which was
originally proposed by Eckart (1951, 1952) and later improved
by Berkhoff (1972, 1976) and re-derived by Smith and Sprinks
(1975). It can also be found in Jonsson and Brink-Kjaer (1973) and
Lozano and Meyer (1976).

However, the conventional MSE is only valid for bathymetries
with their slopes being ‘mild’. Using numerical solutions based on
the hybrid finite element method, Tsay and Liu (1983) declared
that the MSE can produce accurate results even for bottom slope
being 1:1. Booij (1983) pointed out that Tsay and Liu’s (1983)
discovery is correct only for waves propagating parallel to the
contours of the sloping bed, for waves propagating normal to the
contours, the MSE produces accurate results only when the
bottom slope is less than 1:3. Responding to the failure of the
MSE to approximate adequately wave scattering by singly and
doubly periodic ripple beds, Kirby (1986) derived an extended
MSE which still includes the first order term related to rh only
but differs from the conventional MSE. Further, Chamberlain and

Porter (1995) derived the modified mild-slope equation (MMSE)
in which both the bottom curvature term related to r2h and the
slope-squared term related to ðrhÞ2 are included. This MMSE
was then rederived by Chandrasekera and Cheung (1997). Other
improved versions to the MSE were given by Porter and Staziker
(1995), Suh et al. (1997), Athanassoulis and Belibassakis (1999),
Kim and Bai (2004) and Toledo and Agnon (2010).

However, seeking an analytic solution to the MSE or MMSE is
extremely difficult though a few analytic solution in the long-
wave limit has been constructed, see Liu and Lin (2005), Chang
and Liou (2007), Jung et al. (2008) and Xie et al. (2011) in one-
dimensional case. The main barrier comes from the fact that the
linear dispersion relation is implicit with transcendental func-
tions being included which leads to the implicity of coefficients in
the MSE or MMSE. Recently, by using the real analytic implicit
function theorem (Krants and Parks, 2002), Yang (2011) derived
several crucial recursive formulae for calculating arbitrary order
derivatives of two implicit coefficients in the MSE. Based on these
recursive formulae, they can expand the two implicit coefficients
k2 and lnðCCgÞ into Taylor series to arbitrary order for smooth
topographies and successfully constructed exact analytic solu-
tions to the MSE in terms of Taylor series for wave reflection by
several one-dimensional piecewise smooth topographies. Very
recently, by constructing several recursive formulae to calculate
arbitrary order derivatives of the bottom curvature term and
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slope-square term, Liu et al. (2012) extended Yang’s (2011)
analytic technique to solve the MMSE (Chamberlain and Porter,
1995) for some one-dimensional piecewise smooth topographies.

In this paper, Liu et al.’s (2012) exact analytic technique for
solving the MMSE is applied to conduct analytic studies to wave
reflection by an asymmetrical trench with various shapes.
A previous similar study to this wave problem was conducted
by Jung et al. (2008) where an approximate analytic solution to
the MSE by using Liu et al.’s (2004) approximate analytic
technique based on Hunt’s (1979) direct solution to the implicit
wave dispersion was given. Intensive comparison between the
present exact analytic model and Jung et al.’s (2008) approximate
analytic model is made and the influence of trench dimensions to
wave reflection effect is investigated based on the present model.

2. Recursive formulae

According to Chamberlain and Porter (1995), the MMSE can be
expressed as
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in which g is the gravitation acceleration, h¼h(x) is the water
depth, and k¼k(x) is the local wave number which is determined
by the following linear implicit dispersion relation:

o2 ¼ gk tanh kh: ð5Þ
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Eq. (1) can be equivalently rewritten as
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Using the implicit dispersion relation equation (5), we have
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where
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Recently, several crucial recursion formulae for analytically
calculating arbitrary order derivatives of the implicit coefficients
in Eq. (7) were constructed by Yang (2011) and Liu et al. (2012)
which are listed as follows, in which Recursion formulae 1 and
2 were given by Yang (2011) and Recursion formula 3 was given
by Liu et al. (2012).

Recursion formula 1. Given a point x in the concerned
physical domain, assume that h(x) is analytic and positive in
an interval ðx�r,xþrÞ. Then the nth derivative of wavenumber
function k(x) in the interval can be recursively calculated as
follows:
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where GðmÞðxÞ and FðmÞðxÞ can be calculated recursively as follows:
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