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a  b  s  t  r  a  c  t

Mass  transport  equations  in  multicomponent  polymeric  coatings  are  nonlinear  coupled  partial  differen-
tial equations.  These  equations  were  solved  using  Galerkin’s  method  of  finite  elements  which  converts
them  to  ordinary  differential  equations.  Residuals  were  made  orthogonal  by using  quadratic  basis  func-
tions.  Non-uniform  elements  were  used  to  capture  steep  concentration  gradient  near  the  top  of  the
coating.  Finite  element  formulation  has  been  solved  using  ode15s  of MATLAB.  Results  are  in very  good
agreement  with  the  earlier  results  using  different  solution  techniques.

© 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Diffusion is usually the rate controlling step during transport in many polymer solvent systems. Fick’s law of diffusion, states that the
flux of a diffusing component at a location equals the product of diffusion coefficient and its concentration gradient there. For polymer
solvent systems, the diffusion coefficient is a strong function of temperature and concentration. Free volume theory (Vrentas & Duda,
1977a, 1977b)  describes this function accurately for several systems involving one polymer and one solvent.

Flux of the solvent at a location in multicomponent systems is determined by not only its concentration gradient but also those of others.
The diffusion coefficient of the solvent, which combines with its own concentration gradient is called main-term coefficient and those that
combine with gradient for other solvents are called cross-term coefficients. In fact, to describe diffusion in a N-component system, (N − 1)2

mutual diffusion coefficients are needed.
Recently, a unified theory (Price & Romdhane, 2003) is proposed of which the existing theories are special cases. They showed that the

theories predict almost same average concentration of solvent in a drying ternary coating. But, they could predict different concentration
profile of the solvent inside the coating. Such profiles are important in coatings that phase separate during drying.

Transport equations in multicomponent polymer–solvent–solvent systems are non-linear coupled partial differential equations. This
paper deals with the solution scheme and the optimization of free-volume parameter required for diffusion models.

2. Governing equations

Fig. 1 shows the schematic of a drying ternary coating that has been cast on impermeable substrate. As the solvent reaches the surface
from the bottom, it evaporates into air. As solvents depart, the coating shrinks with time. There is no mass transfer through the substrate;
hence flux of both the solvents is zero at the substrate. The coating is heated from both the top and bottom sides.

2.1. Mass transport

The rate of change of concentration of solvent 1 equals gradient of flux, which is due to its own concentration gradient and that of
solvent 2.
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Fig. 1. Schematic of a drying coating.

Mass balance for solvent 1:
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Mass balance for solvent 2:
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The reference velocity is chosen to be volume average velocity because it is shown to be equal to zero if there is no change in volume
on mixing [4].

ci, is the concentration of solvent i, t is the time, z, is the thickness of the coatings at anytime, D11 and D22 are main-term diffusion
coefficients that characterize transport due to solvents own concentration gradient, D12 and D21 are cross-term diffusion coefficients that
characterize transport due to other solvents concentration gradient.

Mutual diffusion coefficients were calculated using multicomponent diffusion models. There are several models available to relate
self-diffusion coefficient to mutual diffusion coefficient (Alsoy & Duda, 1999; Dabral, 1999; Price & Romdhane, 2003; Zielinski & Hanley,
1999). In this work only Alsoy and Duda model has been used and given in Table 1.

Self diffusion coefficients were calculated using Vrentas and Duda (1977a, 1977b) free volume theory:
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(Vrentas, Duda, & Ling, 1984), and

The hole free volume is given by:
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are free volume parameters for solvent 1 and solvent two respectively

K13
� , K23 − Tg3: are free volume parameters for polymer

Table 1
Four cases for diffusion coefficients of ternary polymer solvent systems (Alsoy & Duda, 1999).
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