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a b s t r a c t

A practical approach for calculating the bottom shear stress beneath long-crested (2D) and short-

crested (3D) nonlinear random waves is provided. The approach is based on assuming the waves to be a

stationary narrow-band random process and by adopting the Forristall (2000) wave crest height

distribution representing both 2D and 3D nonlinear random waves. Results are presented for laminar,

smooth turbulent and rough turbulent flow. Examples are also included to illustrate the applicability of

the results for practical purposes using data typical for field conditions; the mobile layer thickness in

sheet flow representing rough turbulent flow; erosion of mud representing smooth turbulent flow and

deposition of mud representing laminar flow.

& 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Ocean surface waves show a complex three-dimensional irregular
pattern where the sharpening of the wave crests manifests wave
nonlinearity. In finite water depths this affects the bottom wave
boundary layer, which is a thin flow region at the seabed dominated
by friction arising from the bottom roughness. The wave boundary
layer flow determines the bottom shear stress, which affects many
phenomena in coastal engineering, e.g. sediment transport and
assessment of the stability of scour protection in the marine
environment. A review is, e.g., given in Holmedal et al. (2003).

For the prediction of the bottom friction under nonlinear
random waves, a commonly used procedure is to substitute the
wave height, H, or the bed orbital velocity amplitude, U, with their
rms (root-mean-square) values Hrms and Urms, respectively, in an
otherwise deterministic approach, see e.g. Soulsby (1997). How-
ever, this procedure does not account for the stochastic feature of
the processes included.

Other studies of bottom friction for long-crested random
waves have been made by, e.g., Madsen (1994), Simons et al.
(1994, 1996), Myrhaug (1995), Myrhaug et al. (1998, 2001),
Holmedal et al. (2000, 2003), and Myrhaug and Holmedal (2002).

The purpose of this study is to provide a practical approach for
calculating the bottom shear stress beneath long-crested (2D) and
short-crested (3D) nonlinear random waves. The approach is based

on assuming the waves to be a stationary narrow-band random
process and adopting the Forristall (2000) wave crest height
distribution representing both 2D and 3D random waves. The
approach does not give any information about the boundary layer
flow itself, but the maximum bottom shear stress can be estimated
to a degree of accuracy suitable for many practical purposes. The
cumulative distribution function of individual bed shear stress
maxima for 2D and 3D nonlinear random waves is determined.
Results are presented for laminar, smooth turbulent and rough
turbulent flow. The maximum bottom shear stress is the quantity
of interest when, e.g., assessing sediment mobility at the seabed.

2. Theoretical background

The maximum bottom shear stress under the wave crest of a
single wave in a sea state with stationary narrow-band random
waves, tm, is given as

tm

r ¼
1

2
f wU2

c ð1Þ

where Uc is the maximum near-bed orbital velocity under the
wave crest, r is the density of the fluid and fw is the wave friction
factor given as for laminar (Eq. (2)), smooth turbulent (Eq. (4))
and rough turbulent flow (Eqs. (6)–(9)).

For laminar flow, the wave friction factor is given as that for
Stokes’ second problem (Schlichting, 1979)

f w ¼ 2Re�0:5 for Rer3� 105
ð2Þ
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where

Re¼
UcAc

n ð3Þ

is the Reynolds number associated with the wave motion, Ac¼Uc/op

is the maximum near-bed orbital displacement under the wave
crest, op is the spectral peak wave frequency and n is the kinematic
viscosity of the fluid.

For smooth turbulent flow, the Myrhaug (1995) smooth bed
wave friction factor is adopted

f w ¼ rRe�s for Re43� 105
ð4Þ

with the coefficients

ðr,sÞ ¼ ð0:0450,0:175Þ ð5Þ

Alternative coefficients (r, s) for smooth turbulent flow are given
in Soulsby (1997).

For rough turbulent flow, the friction factor proposed by
Myrhaug et al. (2001) is used

f w ¼ c
Ac

z0

� ��d

ð6Þ

ðc,dÞ ¼ ð18,1Þ for 20tAc=z0t200 ð7Þ

ðc,dÞ ¼ ð1:39,0:52Þ for 200tAc=z0t11000 ð8Þ

ðc,dÞ ¼ ð0:112,0:25Þ for 11000tAc=z0 ð9Þ

where z0¼2.5d50/30 is the bed roughness based on the median
grain size diameter d50. Note that Eq. (8) corresponds to the
coefficients given by Soulsby (1997) obtained as best fit to data
for 10uAc=z0u105. The advantage of using this friction factor for
rough turbulent flow is that it is possible to derive the stochastic
approach analytically.

At a fixed point in a sea state with stationary narrow-band
random waves consistent with the Stokes second order regular
waves in finite water depth h the non-dimensional nonlinear
crest height, wc¼Zc/arms, and the non-dimensional nonlinear
maximum horizontal particle velocity evaluated at the seabed,
Ûc ¼Uc=Urms, are (Dean and Dalrymple, 1984)

wc ¼ âþOðkparmsÞ ð10Þ

Ûc ¼ âþOðkparmsÞ ð11Þ

Here â¼ a=arms is the non-dimensional linear wave amplitude,
where the linear wave amplitude a is made dimensionless with
the rms value arms, and

Urms ¼
oparms

sinhkph
ð12Þ

Moreover, O(kparms) denotes the second order (nonlinear) terms,
which are proportional to the characteristic wave steepness of the
sea state, kparms, where kp is the wave number corresponding to
op(¼peak frequency of wave spectrum) given by the dispersion
relationship for linear waves (which is also valid for the Stokes
second order waves)

o2
p ¼ gkptanhkph ð13Þ

and g is the acceleration of gravity.
Now Eq. (10) can be inverted to give â¼wc�OðkparmsÞ, which

substituted in Eq. (11) gives Ûc ¼wcþOðkparmsÞ. Thus it appears
that â can be replaced by wc in the linear term of Ûc , because the
error involved is of second order. Consequently, by neglecting
terms of O(kparms) the maximum near-bed orbital velocity under
the wave crest in dimensional form can be taken as

Uc ¼
opZc

sinhkph
ð14Þ

By substituting Eq. (14) in Eqs. (1)–(4) and using that Ac¼Uc/op,
the non-dimensional maximum shear stress under the wave crest,
tc¼tm/trms, for laminar (r¼2, s¼0.5) and smooth turbulent flow is
given as

tc ¼w2�2s
c ð15Þ

where

trms

r
¼

1

2
rRe�s

rmsU
2
rms; Rerms ¼

UrmsArms

n
ð16Þ

and Arms¼Urms/op.
Similarly, by substituting Eq. (14) in Eqs. (1) and (6) the non-

dimensional maximum shear stress under the wave crest for
rough turbulent flow is given as

tc ¼w2�d
c ð17Þ

where

trms

r ¼
1

2
c

Arms

z0

� ��d

U2
rms ð18Þ

Now the Forristall (2000) parametric crest height distribution
based on simulations using second order theory is adopted. The
simulations were based on the Sharma and Dean (1981) theory;
this model includes both sum-frequency and difference-fre-
quency effects. The simulations were made both for 2D and 3D
random waves. A two-parameter Weibull distribution with the
cumulative distribution function (cdf) of the form

PðwcÞ ¼ 1�exp �
wcffiffiffi
8
p

a

� �b
" #

; wc Z0 ð19Þ

was fitted to the simulated wave data. The Weibull parameters a
and b were estimated from the fit to the simulated wave data, and
are based on the wave steepness S1 and the Ursell parameter UR

defined by

S1 ¼
2p
g

Hs

T2
1

ð20Þ

and

UR ¼
Hs

k2
1h3

ð21Þ

Here Hs is the significant wave height, T1 is the spectral mean
wave period and k1 is the wave number corresponding to T1. The
wave steepness and the Ursell number characterize the degree of
nonlinearity of the waves in finite water depth. At zero steepness
and zero Ursell number the fits were forced to match the Rayleigh
distribution, i.e. a¼ 1=

ffiffiffi
8
p
� 0:3536 and b¼2. Note that this is the

case for both 2D and 3D linear waves. The resulting parameters
for the 2D-model are

a2D ¼ 0:3536þ0:2892S1þ0:1060UR

b2D ¼ 2�2:1597S1þ0:0968U2
R ð22Þ

and for the 3D-model

a3D ¼ 0:3536þ0:2568S1þ0:0800UR

b3D ¼ 2�1:7912S1�0:5302URþ0:284U2
R ð23Þ

Forristall (2000) demonstrated that the wave setdown effects
were smaller for short-crested than for long-crested waves, which
is due to that the second-order negative difference-frequency
terms are smaller for 3D waves than for 2D waves. Consequently
the wave crest heights are larger for 3D waves than for 2D waves.

Based on the Forristall distribution the cdf of tc is obtained by
transformation of random variables, i.e. using Eqs. (15), (17) and
(19) it follows that tc is given by the two-parameter Weibull

D. Myrhaug, L.E. Holmedal / Ocean Engineering 38 (2011) 2015–20222016



Download English Version:

https://daneshyari.com/en/article/1726365

Download Persian Version:

https://daneshyari.com/article/1726365

Daneshyari.com

https://daneshyari.com/en/article/1726365
https://daneshyari.com/article/1726365
https://daneshyari.com

