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a b s t r a c t

A theoretical method is used to predict the sinkage and trim of two moving ships as they pass each

other, either from opposite directions, or as one ship overtaking the other. The description is simplified

to open water of shallow constant depth. The method is based on linear superposition of slender-body

shallow-water flow solutions. It is shown that even for head-on encounters, oscillatory heave and pitch

effects are small, and sinkage and trim can be calculated using hydrostatic balancing. Results are

compared to available experimental results, and applied to an example situation of a containership and

bulk carrier in a head-on or overtaking encounter. Using dimensional analysis, simple approximate

formulae are then developed for estimating the maximum sinkage of two similar vessels in a passing

encounter.

& 2009 Elsevier Ltd. All rights reserved.

1. Introduction

Passing manoeuvres of ships in shallow water can produce
significant sway and yaw motions of each vessel, which can be
dangerous if not properly understood and allowed for. Much
research has been done into calculating these sway and yaw
motions. Tuck and Newman (1974) developed a slender-ship
method for calculating sway forces and yaw moments for two
ships moving on parallel courses in deep water. The ships could
each have arbitrary speeds, so the solution was valid for head-on
encounters, overtaking manoeuvres, or for one ship stationary.
King (1977) included the effect of horizontal circulation, applying
a Kutta condition at each ship’s stern. Yeung (1978) developed a
shallow-water method, including the effect of circulation, to
calculate sway forces and yaw moments on each ship. Davis and
Geer (1982) developed an alternative method for calculating the
slender-body sway forces and yaw moments, based on asymptotic
analysis. Further numerical work to predict sway forces and yaw
moments was done by Kijima (1987), while Brix (1993) developed
expressions for the maximum sway forces and yaw moments
during an overtaking manoeuvre. Calculated sway forces and yaw
moments were used to define the limits of control during passing
or overtaking manoeuvres in Xu et al. (2008).

The specific problem of vertical motions of a moving ship, due
to another passing ship, has received comparatively little atten-
tion. Yeung (1978) found analytically that the dominant heave
force and pitch moment were due to linear superposition of the

pressure fields produced by each ship. The circulation around each
vessel, while important for sway forces and yaw moments, was
found to have only a secondary effect on heave and pitch.

An experimental investigation into the transient sinkage and
trim of passing model ships was undertaken by Dand (1981),
involving the use of two independent towing carriages. These
experiments showed the large changes in sinkage and trim that
can occur for close-passing manoeuvres, and the resulting
increase in grounding risk.

In this article, we start with the theoretical basis developed by
Yeung (1978) for two ships moving on parallel courses, and
calculate sinkage and trim for example ships through passing
manoeuvres. Dimensional analysis will then be used to develop
simple formulae for estimating the maximum sinkage of similar
vessels during a passing manoeuvre.

2. Theoretical method

The slender-body shallow-water method is based on the
theory of Tuck (1966) for a single ship. For simplicity we shall
here consider the case of open water with constant depth, and
assume the ships are passing on parallel courses from opposing
directions. The ships are labelled ‘‘Base Ship’’ and ‘‘Passing Ship’’.
The geometry is shown in Fig. 1, in the earth-fixed coordinates
(x,y).

The y-coordinate is chosen such that the centreline of the base
ship lies on y ¼ 0, while the centreline of the passing ship lies on
y ¼ yP. We assume that yP is large compared to each ship’s beam,
and of similar order to each ship’s length. In this way, each ship
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can be considered to lie entirely in the far field of the other vessel,
as described in Yeung (1978).

The ship speeds U and UP are assumed constant. As noted in
the Dand (1981) experiments, head-on encounters and particu-
larly overtaking encounters produce changes in resistance which
translate into changes in ship speed at constant engine RPM. In
this article however, this effect will not be included.

The ‘‘submerged length’’ of the base ship is L, which is the
distance from the foremost part of the submerged hull (e.g., the
front of the bulb, if present) to the aftmost part of the submerged
hull. The submerged length is sometimes termed the ‘‘Length
Overall Submerged’’ (Los), but the subscripts will be omitted here,
and the submerged length of the passing ship denoted LP.

For mathematical convenience, ‘‘submerged midships’’ is mid-
way between the foremost and aftmost points of the submerged
hull on each ship. The (x,t) coordinates are chosen such that the
submerged midships of both ships pass through x ¼ 0 at time
t ¼ 0.

Following Tuck (1966), the hydrodynamic pressure field
(pressure above hydrostatic) around the base ship can be written
as

p ¼ �
rU2

2ph
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� F2

h

q
Z L=2

�L=2

S0ðxÞðX � xÞ
ðX � xÞ2 þ ð1� F2

hÞy
2

dx. (1)

Here h is the undisturbed water depth, assumed constant, and the
depth-based Froude number is

Fh ¼
Uffiffiffiffiffiffi
gh

p . (2)

X is a ship-fixed coordinate centred on the ship’s submerged
midships, with X ¼ x+Ut if the midships pass through x ¼ 0 at
time t ¼ 0. S(x) is the hull cross-sectional area at station x, with
the forward extremity of the submerged hull at x ¼ �L/2 and the
aft extremity at x ¼ L/2. The primed S0(x) denotes the derivative
dS/dx. The section area is calculated at the static floating position,
since to leading order the pressure field is unaffected by the
dynamic sinkage and trim of the ship.

Linear superposition of the pressure fields due to each ship, as
proposed by Yeung (1978), yields the following expression for the
pressure on the base ship:
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The passing ship integral in the second term has SP(z) defined
from the bow to the stern, as for the base ship, with the forward

extremity at z ¼ �LP/2 and aft extremity at z ¼ LP/2. The depth-
based Froude number of the passing ship is

FP ¼
UPffiffiffiffiffiffi

gh
p . (4)

The pressure field is time-dependent, through the changing
longitudinal distance between ship centres (positive when
approaching)

XCC ¼ �ðU þ UPÞt. (5)

The upwards vertical force Z on the base ship is found as in Tuck
(1966) to be

Z ¼

Z L=2

�L=2
pðX; tÞBðXÞdX (6)

while the bow-down trim moment about the LCF is

MLCF ¼

Z L=2

�L=2
pðX; tÞðX � XLCFÞBðXÞdX. (7)

3. Sinkage and trim

Eqs. (3), (6) and (7) give the time-dependent vertical force and
trim moment on the base ship. We now seek to determine sinkage
and trim. The LCF sinkage sLCF is defined as the sinkage of the LCF
beneath its static floating position (i.e., positive downward), in
metres when using SI units. The trim y is defined as the change in
trim (positive bow-down) as compared to the static floating
position. This is calculated in radians according to the formulae,
but will be plotted in degrees for clarity.

In order to determine sinkage and trim, we must first assess
whether the flow changes are sufficiently rapid to cause oscillatory
heave and pitch motions of the ship. A simple quasi-steady method
to determine sinkage and trim assumes that forces remain more or
less in equilibrium, in which case hydrostatic balancing can be
used. In that case, the upwards vertical force Z is related to the
quasi-steady sinkage sLCF and waterplane area A through

Z ¼ �rgAsLCF. (8)

Similarly, MLCF is related to the quasi-steady bow-down trim y
(in radians) through

MLCF ¼ rgILCFy, (9)

ILCF ¼

Z L=2

�L=2
ðX � XLCFÞ

2BðXÞdX. (10)

However, if oscillatory heave and pitch are important, we need
to use a seakeeping-type dynamic method to determine these. In
calm water, if the LCF is close to the LCB, heave and pitch can be
considered uncoupled (Bhattacharyya 1978). The sinkage equa-
tion of motion then follows the standard seakeeping form

ðmþ azÞ
d2sLCF

dt2
þ bz

dsLCF

dt
þ czsLCF ¼ �ZðtÞ. (11)

The ‘‘exciting force’’, which in seakeeping problems would
involve wave elevation terms, is the time-dependent downward
vertical force [�Z(t)]. The coefficients are as follows:

m ship mass
az heave added mass
bz heave damping coefficient
cz heave restoring coefficient

According to strip theory, the coefficients are calculated by
summing the contributions from each hull section. For example,

ARTICLE IN PRESS

x

y

U

UP

yP

Base Ship

Passing Ship

Fig. 1. Coordinate system and notation.
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