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Laboratoire de Mécanique des Fluides (CNRS UMR6598), Ecole Centrale de Nantes, 1 Rue de la Noë B.P 92101, 44321 Nantes Cedex 3, France
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a b s t r a c t

In this paper, wave farms composed of two either surging or heaving wave energy converters are

considered. Using a numerical model which takes into account wave interactions, the impact on the

absorbed wave power of the separating distance between the two systems and the wave direction is

studied. In regular waves, a modified qmod factor is introduced and it is found to be more relevant than

the usual q factor for identifying this impact. Then, it is shown that, asymptotically, the alteration of the

energy absorption due to wave interaction effects decreases with the square root of the distance. This is

a slow decay, which leads to a still significant modification of the wave energy absorption at long

distance (up to 15% at a distance of 2000 m). In irregular waves, it is shown that constructive and

destructive effects compensate each other, particularly when considering the mean annual power. It

leads to a smaller impact of the wave interactions on the absorbed energy and shorter distances

(smaller than 10% for distances greater than 400 m). Finally, conclusions on if wave interactions should

be taken into account or not when designing a wave farm are drawn in function of the distance.

& 2010 Elsevier Ltd. All rights reserved.

0. Introduction

Wave energy converters (WECs) are designed to be deployed
in large arrays composed of many systems. In such arrays, each
single system interacts with all the others by absorbing, radiating
and diffracting waves. These wave interactions have an impact on
the energy output from arrays, which motivated many research
studies over the last decades.

The effect of array interactions on the energy production is
usually quantified by the q factor, defined as the ratio between the
output power from an array of N systems divided by N times the
output power from a single isolated system. If qo1, it means that
the averaged energy production of each system in the array is
lower than the energy production of isolated systems. Hence, the
wave interferences have a destructive effect on the output power
of the wave farm. Reversely, if q41, the effect is constructive.

In the pioneering work of Budal (1977), Evans (1979) and
Falnes (1980), it has been shown that the q factor can be either
higher or lower than 1 depending on the wave frequencies and
the array layout. This means that it can exist farm arrangements
in which the energy production from a sum of WECs is more than
the sum of the energy production of each single WEC. However, in
Thomas and Evans (1981), it is stated that farm layouts should be
designed in order to minimise destructive interferences for
practical applications. Since then, many studies have been

conducted by various authors on linear arrays of small devices
(Simon, 1982; McIver and Evans, 1984; Mavrakos and Mclver,
1997; Falcão, 2002; Justino and Clément, 2003; Child and
Venugopal, 2007; Cruz et al., 2009; Weller et al., 2009).

In most of these studies, only closely spaced arrays are
considered. In such arrays, wave interactions are strong because
each WEC feels the wave perturbation coming from one or several
others WECs in the array. It is well known (Falnes, 2002)
that the wave perturbation is composed of a near field part
which decays with the inverse distance to the body which
generated it; and a far field part which decays with the square-
root of that distance. Hence, when the distance between the WECs
in the array is sufficiently large, wave interactions become
negligible.

For practical reasons (moorings for example), arrays of WECs
can become sparse, with typical separating distances of a few
hundred meters. Taking into account the considerations of
previous paragraph, one could ask if the WECs are far enough in
order to neglect the wave interactions. This is the question
addressed in this study by considering two arrays of two generic
wave energy converters—one heaving and one surging device—

located at several different distances one from the other.
In the first part of this paper, a numerical model of the array

is derived in the frequency domain. In the second part, results
of numerical simulation are presented, both in regular and
irregular waves. In conclusion, range of distances for which it
seems to be worth taking into account wave interactions or not
are proposed.
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1. Methods

1.1. Equation of motion of two wave energy converters

Let us consider two basic arrays of wave energy converters,
Fig. 1. The first array, array I, is composed of two semi-submerged
cylinders and the second array, array II, of two semi-submerged
rectangular shaped floating bodies. The diameter of each cylinder is
taken equal to 10 m and their draught is equal to 10 m,
corresponding to a displacement V1 of around 785 m3. It is
assumed that both cylinders can move only in the heave motion
z (i.e. along the vertical axis), with all other degrees of freedom
ideally restricted. For the second array, the width and draught of
the two bodies are taken equal to 10 m in order to have the same
surface facing the waves and the length is taken equal to 7.85 m in
order to have a volume similar as the one of the cylinders. Their
motion is restricted to the surge motion x, all other degrees of
freedom being ideally restricted. For both arrays, an idealised
power take off (PTO) is considered, composed of a linear spring and
damper system with stiffness kPTO and damping coefficient bPTO.

Let us note with index 1 and 2 all quantities related,
respectively, to the first and with the second system in each
array. Let z1 and z2 be the heave motion of each buoy in the first
array, and x1 and x2 be the surge motions in the second one. Let
X=(z1 z2)t (respectively (x1 x2)t) be the position vector of the
whole array. Assuming the fluid to be non-viscid and incompres-
sible, the flow to be irrotational, and the amplitude of motions
and waves to be sufficiently small in comparison with the
wavelength and the dimensions of the bodies, the classical
linearised potential theory can be used as a framework for
calculation of the fluid–structure interactions. Hence, one can
write the equation of motion of the WEC in the frequency domain
for unitary wave amplitude and a wave frequency o:

ðMþAMðoÞÞ €XþðBPTOþBðoÞÞ _XþðKHþKAþKPTOÞX¼ Fex ð1Þ

with:

� X¼RðXeiotÞ and _X; €X being, respectively, the velocity and
acceleration vectors of the WECs.
� M¼ ðm1

0
0

m2
Þ the mass matrix of the system. As it is considered

identical bodies in each of both arrays, m1=m2=785 t.

� KH ¼ ð
kh1
0

0
kh2
Þ the hydrostatic stiffness matrix of the system. In

the array composed of heaving cylinders, kh1=kh2=770 kN
m�1. In the array composed of surging barges, kh1=kh2=0 kN
m�1.
� KA an additional stiffness matrix which represents the action

of possible moorings. In this study, it was neglected, i.e. KA=0
in both arrays.
� AMðoÞ ¼ ðam11

am21

am12
am22
Þ the added mass matrix and BðoÞ ¼ ðb11

b21

b12
b22
Þ

the wave damping matrix which represent the radiation of
waves by the body when it moves. In these matrices, the
nondiagonal terms are not anymore equal to 0. They represent
the pressure force measured on one body due to the radiated
wave associated with a motion of the other one. For obvious
symmetry reasons, am11=am22, am12=am21, b11=b22, b12=b21.
� Fex ¼RðF exeiotÞ is the excitation vector per unit of wave

amplitude, associated to the action of incident and diffracted
wave fields upon the WECs.
� KPTO ¼ ð

kPTO
0

0
kPTO
Þ and BPTO ¼ ð

bPTO
0

0
bPTO
Þ are the matrices asso-

ciated with the action of the PTOs. In array I, kPTO is set equal to
0. In array II, kPTO is tuned in order the surging barges to have
the same natural frequency than the heaving cylinders of array
I. For both arrays, the value of bPTO has been tuned in order to
achieve the maximum energy absorption at the natural
frequency o0 of an isolated device. Following Falnes (2002),
it has been set equal to the wave damping coefficient, i.e:

bPTO ¼ bisolatedðo0Þ.

In regular waves, the mean power extracted by each buoy in
the array per unit of wave amplitude is given by

pi ¼
1
2bPTOo2jXi j

2 ð2Þ

with iA1;2. For the whole array, the mean absorbed power is

p¼
X2

i ¼ 1

pi ð3Þ

In irregular waves, characterised by a wave energy spectrum S,
the mean power extracted by each buoy is given by

Pi ¼

Z þ1
0

SðoÞpiðoÞdo ð4Þ

Fig. 1. Schematic representation of two arrays of generic wave energy converters. On the left, array I is composed of two heaving cylinders. On the right, array II is

composed of two surging barges.
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